|
Уфимский математический журнал, 2013, том 5, выпуск 1, страницы 63–82
(Mi ufa187)
|
|
|
|
Эта публикация цитируется в 8 научных статьях (всего в 8 статьях)
Убывание решения анизотропного параболического уравнения с двойной нелинейностью в неограниченных областях
Л. М. Кожевникова, А. А. Леонтьев Стерлитамакская государственная педагогическая академия, пр. Ленина, 37, 453103, г. Стерлитамак, Россия
Аннотация:
Работа посвящена некоторому классу
анизотропных параболических уравнений с двойной нелинейностью,
представителем которого является модельное уравнение вида
$$
(|u|^{k-2}u)_t=\sum_{\alpha=1}^n(|u_{x_{\alpha}}|^{p_{\alpha}-2}u_{x_{\alpha}})_{x_\alpha},\quad
p_n\geq \ldots \geq p_1>k,\quad k\in(1,2).
$$
Для решений первой
смешанной задачи в цилиндрических областях
$D=(0,\infty)\times\Omega,\;$ $\Omega\subset \mathbb{R}_n,\;n\geq 2,$
с однородным краевым условием Дирихле и финитной начальной
функцией установлены точные оценки скорости убывания при
$t\rightarrow\infty$. Ранее такие результаты были получены
авторами для $k\geq 2$. Случай $k\in(1,2)$ отличается способом
построения галеркинских приближений, который для модельного
изотропного уравнения был предложен Э. Р. Андрияновой, Ф. Х. Мукминовым.
Ключевые слова:
анизотропное уравнение, параболическое уравнение с двойной нелинейностью, существование решения, скорость убывания решения.
Поступила в редакцию: 23.12.2011
Образец цитирования:
Л. М. Кожевникова, А. А. Леонтьев, “Убывание решения анизотропного параболического уравнения с двойной нелинейностью в неограниченных областях”, Уфимск. матем. журн., 5:1 (2013), 63–82; Ufa Math. J., 5:1 (2013), 63–82
Образцы ссылок на эту страницу:
https://www.mathnet.ru/rus/ufa187 https://www.mathnet.ru/rus/ufa/v5/i1/p63
|
Статистика просмотров: |
Страница аннотации: | 466 | PDF русской версии: | 139 | PDF английской версии: | 19 | Список литературы: | 82 | Первая страница: | 2 |
|