Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 4, Pages 725–745
DOI: https://doi.org/10.4213/tvp5304
(Mi tvp5304)
 

This article is cited in 5 scientific papers (total in 5 papers)

On conditions for a probability distribution to be uniquely determined by its moments

E. B. Yarovayaa, J. Stoyanovb, K. K. Kostyashinc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences
c Lomonosov Moscow State University
Full-text PDF (563 kB) Citations (5)
References:
Abstract: We study the relationship between the well-known Carleman's condition guaranteeing that a probability distribution is uniquely determined by its moments, and a recent, easily checkable condition on the rate of growth of the moments. We use asymptotic methods in the theory of integrals and involve properties of the Lambert $W$-function to show that the quadratic growth rate of the ratios of consecutive moments as a sufficient condition for uniqueness is slightly more restrictive than Carleman's condition. We derive a series of statements, one of which shows that Carleman's condition does not imply Hardy's condition, although the inverse implication is true. Related topics are also discussed.
Keywords: random variables, moment problem, M-determinacy, Carleman's condition, rate of growth of the moments, Hardy's condition, Lambert $W$-function.
Funding agency Grant number
Russian Science Foundation 19-11-00290
The work of E. B. Yarovaya in sections 2–4 was supported by the Russian Science Foundation (grant 19-11-00290) and was performed at the Steklov Mathematical Institute of Russian Academy of Sciences.
Received: 16.05.2019
Revised: 09.07.2019
Accepted: 18.07.2019
English version:
Theory of Probability and its Applications, 2020, Volume 64, Issue 4, Pages 579–594
DOI: https://doi.org/10.1137/S0040585X97T989714
Bibliographic databases:
Document Type: Article
MSC: 60E05, 62E10, 44A60
Language: Russian
Citation: E. B. Yarovaya, J. Stoyanov, K. K. Kostyashin, “On conditions for a probability distribution to be uniquely determined by its moments”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 725–745; Theory Probab. Appl., 64:4 (2020), 579–594
Citation in format AMSBIB
\Bibitem{YarStoKos19}
\by E.~B.~Yarovaya, J.~Stoyanov, K.~K.~Kostyashin
\paper On conditions for a~probability distribution to be uniquely determined by its moments
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 4
\pages 725--745
\mathnet{http://mi.mathnet.ru/tvp5304}
\crossref{https://doi.org/10.4213/tvp5304}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4030819}
\elib{https://elibrary.ru/item.asp?id=43249169}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 64
\issue 4
\pages 579--594
\crossref{https://doi.org/10.1137/S0040585X97T989714}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551393100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079693883}
Linking options:
  • https://www.mathnet.ru/eng/tvp5304
  • https://doi.org/10.4213/tvp5304
  • https://www.mathnet.ru/eng/tvp/v64/i4/p725
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:526
    Full-text PDF :130
    References:70
    First page:33
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024