Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2019, Volume 64, Issue 4, Pages 746–770
DOI: https://doi.org/10.4213/tvp5196
(Mi tvp5196)
 

This article is cited in 1 scientific paper (total in 1 paper)

Weighted Poisson–Delaunay mosaics

H. Edelsbrunner, A. Nikitenko

Institute of Science and Technology Austria, Klosterneuburg, Austria
Full-text PDF (618 kB) Citations (1)
References:
Abstract: Slicing a Voronoi tessellation in $\mathbf{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in $\mathbf{R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbf{R}^n$.
Keywords: Voronoi tessellations, Laguerre distance, weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Poisson point process, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
Funding agency Grant number
Austrian Science Fund I02979-N35
European Research Council 78818 Alpha
Deutsche Forschungsgemeinschaft
This project was supported by the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement 78818 Alpha), and was partially supported by the DFG Collaborative Research Center TRR 109, “Discretization in Geometry and Dynamics” and by grant I02979-N35 of the Austrian Science Fund (FWF).
Received: 17.03.2018
English version:
Theory of Probability and its Applications, 2020, Volume 64, Issue 4, Pages 595–614
DOI: https://doi.org/10.1137/S0040585X97T989726
Bibliographic databases:
Document Type: Article
MSC: 60D05; 68U05
Language: Russian
Citation: H. Edelsbrunner, A. Nikitenko, “Weighted Poisson–Delaunay mosaics”, Teor. Veroyatnost. i Primenen., 64:4 (2019), 746–770; Theory Probab. Appl., 64:4 (2020), 595–614
Citation in format AMSBIB
\Bibitem{EdeNik19}
\by H.~Edelsbrunner, A.~Nikitenko
\paper Weighted Poisson--Delaunay mosaics
\jour Teor. Veroyatnost. i Primenen.
\yr 2019
\vol 64
\issue 4
\pages 746--770
\mathnet{http://mi.mathnet.ru/tvp5196}
\crossref{https://doi.org/10.4213/tvp5196}
\transl
\jour Theory Probab. Appl.
\yr 2020
\vol 64
\issue 4
\pages 595--614
\crossref{https://doi.org/10.1137/S0040585X97T989726}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000551393100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85079643435}
Linking options:
  • https://www.mathnet.ru/eng/tvp5196
  • https://doi.org/10.4213/tvp5196
  • https://www.mathnet.ru/eng/tvp/v64/i4/p746
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024