Abstract:
In this paper some necessary conditions for the ergodicity of stationary processes belonging to the Fortet class [4] are given in terms of higher order spectral moments. These conditions lead to some new ergodic theorems for such processes and to the fact that certain spectral measures uniquely determine the corresponding processes.
Citation:
Ya. G. Sinai, “On Higher Order Spectral Measures of Ergodic Stationary Processes”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 463–470; Theory Probab. Appl., 8:4 (1963), 429–436
\Bibitem{Sin63}
\by Ya.~G.~Sinai
\paper On Higher Order Spectral Measures of Ergodic Stationary Processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 463--470
\mathnet{http://mi.mathnet.ru/tvp4693}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 429--436
\crossref{https://doi.org/10.1137/1108048}
Linking options:
https://www.mathnet.ru/eng/tvp4693
https://www.mathnet.ru/eng/tvp/v8/i4/p463
This publication is cited in the following 14 articles:
Élise Janvresse, Emmanuel Roy, Thierry De La Rue, Encyclopedia of Complexity and Systems Science Series, Ergodic Theory, 2023, 217
Élise Janvresse, Emmanuel Roy, Thierry De La Rue, Encyclopedia of Complexity and Systems Science, 2020, 1
David R. Brillinger, Selected Works of David Brillinger, 2012, 465
David R. Brillinger, Selected Works of David Brillinger, 2012, 149
B. Picinbono, Proceedings of the IEEE Signal Processing Workshop on Higher-Order Statistics. SPW-HOS '99, 1999, 320
B. Picinbono, “Ergodicity and fourth-order spectral moments”, IEEE Trans. Inform. Theory, 43:4 (1997), 1273
Ananthram Swami, Georgios B. Giannakis, Guotong Zhou, “Bibliography on higher-order statistics”, Signal Processing, 60:1 (1997), 65
S. P. Novikov, L. A. Bunimovich, A. M. Vershik, B. M. Gurevich, E. I. Dinaburg, G. A. Margulis, V. I. Oseledets, S. A. Pirogov, K. M. Khanin, N. N. Chentsova, “Yakov Grigor'evich Sinai (on his sixtieth birthday)”, Russian Math. Surveys, 51:4 (1996), 765–778
D.R. Willinger, Workshop on Higher-Order Spectral Analysis, 1989, 41
C.L. Nikias, M.R. Raghuveer, “Bispectrum estimation: A digital signal processing framework”, Proc. IEEE, 75:7 (1987), 869
Mysore R. Raghuveer, Chrysostomos L. Nikias, “Bispectrum estimation via AR modeling”, Signal Processing, 10:1 (1986), 35
T. Matsuoka, T.J. Ulrych, “Phase estimation using the bispectrum”, Proc. IEEE, 72:10 (1984), 1403
D.R. Brillinger, “The identification of polynomial systems by means of higher order spectra”, Journal of Sound and Vibration, 12:3 (1970), 301
M. Rosenblatt, “Remarks on the Burgers Equation”, Journal of Mathematical Physics, 9:7 (1968), 1129