Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1963, Volume 8, Issue 4, Pages 451–462 (Mi tvp4692)  

This article is cited in 18 scientific papers (total in 18 papers)

Short Communications

Markov Measures and Markov Extensions

N. N. Vorob'ev

Leningrad
Abstract: Let ${\mathfrak{K}}$ be a complex with the set of vertices $M$ and $A$, $B$ and $R$ three subsets of $M$. $R$ is said to be separating $A$ and $B$ in ${\mathfrak{K}}$ (notation: $(A\mathop |\limits_R B)_\mathfrak{K}$) if any $a \in A$ and $b\in B$ are not connected in $\mathfrak{K}\setminus\cup_{r\in R}O_\mathfrak{K}r$ ($O_\mathfrak{K}r$ is the star of $r$ in $\mathfrak{K}$).
Let $S_a,a\in M$, be a finite set and $S_A=\prod_{a\in A}S_a,A\subset M$. A measure $\mu _M$ on $S_M$ is said to be Markov relative to $\mathfrak{K}$ if for any separation $(A\mathop |\limits_R B)_\mathfrak{K}$ and $x_R\in S_R$ the inequality, $\mu _M(x_R)\ne0$ implies
$$\mu _M\left(X_A\times X_B|x_R\right) \ne\mu_M\left(X_A|x_R\right)\mu_M\left(X_B|x_R\right)$$
for arbitrary $X_A\subset S_A$ and $X_B\subset S_B$.
Theorem. If the complex $\mathfrak{K}$ is regular, any consistent family of measures $\mu_\mathfrak{K}=\left\{ {\mu _K}\right\}_{K\in\mathfrak{K}}$ on $S_\mathfrak{K}=\left\{{S_K}\right\}_{K\in\mathfrak{K}}$ has a unique extension which is Markov relative to $\mathfrak{K}$.
Received: 08.01.1962
English version:
Theory of Probability and its Applications, 1963, Volume 8, Issue 4, Pages 420–429
DOI: https://doi.org/10.1137/1108047
Document Type: Article
Language: Russian
Citation: N. N. Vorob'ev, “Markov Measures and Markov Extensions”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 451–462; Theory Probab. Appl., 8:4 (1963), 420–429
Citation in format AMSBIB
\Bibitem{Vor63}
\by N.~N.~Vorob'ev
\paper Markov Measures and Markov Extensions
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 451--462
\mathnet{http://mi.mathnet.ru/tvp4692}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 420--429
\crossref{https://doi.org/10.1137/1108047}
Linking options:
  • https://www.mathnet.ru/eng/tvp4692
  • https://www.mathnet.ru/eng/tvp/v8/i4/p451
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024