Abstract:
A consistent family of measures on a finite set is said to be interior if all its measures are interior. The theorem of the note [1] is extended to the set of all interior consistent families of measures.
Citation:
N. N. Vorob'ev, “On a Topologization of the set of Interior Consistent Families of Measures”, Teor. Veroyatnost. i Primenen., 8:4 (1963), 444–451; Theory Probab. Appl., 8:4 (1963), 414–419
\Bibitem{Vor63}
\by N.~N.~Vorob'ev
\paper On a Topologization of the set of Interior Consistent Families of Measures
\jour Teor. Veroyatnost. i Primenen.
\yr 1963
\vol 8
\issue 4
\pages 444--451
\mathnet{http://mi.mathnet.ru/tvp4691}
\transl
\jour Theory Probab. Appl.
\yr 1963
\vol 8
\issue 4
\pages 414--419
\crossref{https://doi.org/10.1137/1108046}
Linking options:
https://www.mathnet.ru/eng/tvp4691
https://www.mathnet.ru/eng/tvp/v8/i4/p444
This publication is cited in the following 2 articles:
N. N. Vorob'ev, “Coalitional Games”, Theory Probab. Appl., 12:2 (1967), 251–266
N. N. Vorob'yev, “On Families of Random Transitions”, Theory Probab. Appl., 9:1 (1964), 47–64