Abstract:
Probability distribution concentrated on k-dimensional smooth surfaces in Rm are shown to possess characteristic functions which decrease like negative powers of the norm of their argument (the latter tending to infinity) if they are generated by bounded surface densities satisfying a Lipschitz condition and the surface (support of the distribution) has no contacts of arbitrarily high order with (m−1)-dimensional hyperplanes in Rm.
Citation:
V. V. Jurinskii, “Bounds for Characteristic Functions of Certain Degenerate Multidimensional Distributions”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 99–110; Theory Probab. Appl., 17:1 (1972), 101–113
\Bibitem{Yur72}
\by V.~V.~Jurinskii
\paper Bounds for Characteristic Functions of Certain Degenerate Multidimensional Distributions
\jour Teor. Veroyatnost. i Primenen.
\yr 1972
\vol 17
\issue 1
\pages 99--110
\mathnet{http://mi.mathnet.ru/tvp4192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1109018}
\zmath{https://zbmath.org/?q=an:0273.60007}
\transl
\jour Theory Probab. Appl.
\yr 1972
\vol 17
\issue 1
\pages 101--113
\crossref{https://doi.org/10.1137/1117008}
Linking options:
https://www.mathnet.ru/eng/tvp4192
https://www.mathnet.ru/eng/tvp/v17/i1/p99
This publication is cited in the following 12 articles:
Valentin Konakov, Stéphane Menozzi, Stanislav Molchanov, “Explicit parametrix and local limit theorems for some degenerate diffusion processes”, Ann. Inst. H. Poincaré Probab. Statist., 46:4 (2010)
D. A. Popov, “Estimates with constants for some classes of oscillatory integrals”, Russian Math. Surveys, 52:1 (1997), 73–145
Vidmantas Bentkus, Friedrich G�tze, Ri?ardas Zitikis, “Asymptotic expansions in the integral and local limit theorems in banach spaces with applications to ?-statistics”, J Theor Probab, 6:4 (1993), 727
L. N. Pushkin, “Vectors that are Borel normal on a manifold in Rn”, Theory Probab. Appl., 36:2 (1991), 391–395
E. A. Gorin, S. Yu. Favorov, “Generalizations of Khinchin's inequality”, Theory Probab. Appl., 35:4 (1990), 766–771
I. A. Ikromov, “Invariant estimates of two-dimensional trigonometric integrals”, Math. USSR-Sb., 67:2 (1990), 473–488
R.J.M.M. Does, R. Helmers, C.A.J. Klaassen, “On the edgeworth expansion for the sum of a function of uniform spacings”, Journal of Statistical Planning and Inference, 17 (1987), 149
Yu. V. Borovskih, “Estimates of the characteristic functions with applications to ω2-statistics. I”, Theory Probab. Appl., 29:3 (1985), 488–503
J. PFANZAGL, Developments in Statistics, 3, 1980, 1
G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometric integrals”, Math. USSR-Izv., 15:2 (1980), 211–239
“Summaries of papers presented at the sessions of the probability and statistics section of the Moscow mathematical society (February–October 1974)”, Theory Probab. Appl., 20:2 (1976), 428–443
D. M. Chibisov, “An asymptotic expansion for the distribution of a statistic admitting an asymptotic expansion”, Theory Probab. Appl., 17:4 (1973), 620–630