|
Teoriya Veroyatnostei i ee Primeneniya, 1972, Volume 17, Issue 1, Pages 111–128
(Mi tvp4193)
|
|
|
|
This article is cited in 60 scientific papers (total in 60 papers)
Control of a Solution of a Stochastic Integral Equation
N. V. Krylov Moscow
Abstract:
Let $\xi(t)$ be a Wiener process in $E_n$, $\alpha_n$ a non-anticipative vector function, $\delta=\{\alpha_t\}$, $x_t^{\delta,x}$ a solution of
$$
x_t=x+\int_0^t\sigma(x_s,\alpha_s)d\xi_s+\int_0^t b(x_s,\alpha_s)\,ds,
$$
$\varphi=\varphi(x)$. In this paper, smouthness of functions
$$
v(x)=\sup_{\delta,\tau}\mathbf{M}\biggl[\int_0^\tau e^{-\lambda t}f(x_t^{\delta,x},\alpha_t)\,dt+e^{-\lambda\tau}\varphi(x_\tau^\delta,x)\biggr]
$$
is investigated.
Under conditions of smouthness type on $\sigma,b,f,\varphi$ it is proved that $v\in W_{p,\textrm{loc}}^2$ (Sobolev space). If, in addition, $\sigma\sigma^*$ is strictly positive-definite, then
$$
\sup_\alpha (L^\alpha v+f^\alpha)\leq 0\ (\textrm{a.e.}), \quad \sup_\alpha (L^\alpha v+f^\alpha)=0\ (\textrm{a.e.}\ \{x: v(x)>\varphi(x)\}).
$$
The structure of $\varepsilon$-optimal policies $\delta$ and $\varepsilon$-optimal stopping times $\tau$ is also studied.
Received: 28.04.1970
Citation:
N. V. Krylov, “Control of a Solution of a Stochastic Integral Equation”, Teor. Veroyatnost. i Primenen., 17:1 (1972), 111–128; Theory Probab. Appl., 17:1 (1972), 114–13
Linking options:
https://www.mathnet.ru/eng/tvp4193 https://www.mathnet.ru/eng/tvp/v17/i1/p111
|
|