Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 449–462
DOI: https://doi.org/10.4213/tvp3895
(Mi tvp3895)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum

A. V. Prokhorova, N. G. Ushakovb

a M. V. Lomonosov Moscow State University
b Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Abstract: The uniqueness and stability conditions of reconstructing a distribution of independent identically distributed random variables X1,,XmX1,,Xm by a distribution of the sum S=X1++XmS=X1++Xm for fixed mm are given. This paper considers two generalizations of the problem of reconstructing the random variables XjXj: by the distribution S=γ1X1++γmXmS=γ1X1++γmXm, where the random variables γjγj take values 0 and 1 with some fixed probabilities, and bythe distribution of the sum SN=X1++XNSN=X1++XN of the random number NN of summands XjXj. In these problems there are given not only sufficient stability conditions of reconstructing but quantitative stability estimators.
Keywords: summands distribution, stability, sum of a random number of summands, linear combinations, characteristic function, Poisson distribution, geometric distribution.
Received: 02.09.1999
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 420–430
DOI: https://doi.org/10.1137/S0040585X97979202
Bibliographic databases:
Language: Russian
Citation: A. V. Prokhorov, N. G. Ushakov, “On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 449–462; Theory Probab. Appl., 46:3 (2002), 420–430
Citation in format AMSBIB
\Bibitem{ProUsh01}
\by A.~V.~Prokhorov, N.~G.~Ushakov
\paper On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 449--462
\mathnet{http://mi.mathnet.ru/tvp3895}
\crossref{https://doi.org/10.4213/tvp3895}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978662}
\zmath{https://zbmath.org/?q=an:1032.60010}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 420--430
\crossref{https://doi.org/10.1137/S0040585X97979202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3895
  • https://doi.org/10.4213/tvp3895
  • https://www.mathnet.ru/eng/tvp/v46/i3/p449
  • This publication is cited in the following 9 articles:
    1. Vexler A., “Univariate Likelihood Projections and Characterizations of the Multivariate Normal Distribution”, J. Multivar. Anal., 179 (2020), 104643  crossref  mathscinet  isi
    2. D. V. Belomestny, A. V. Prokhorov, “Stability of characterization the independence of random variables by the independence of the linear statistics”, Theory Probab. Appl., 59:4 (2015), 672–677  mathnet  crossref  crossref  mathscinet  isi  elib
    3. Vexler A., Liu A., Schisterman E., “Nonparametric deconvolution of density estimation based on observed sums”, Journal of Nonparametric Statistics, 22:1 (2010), 23–39  crossref  mathscinet  zmath  isi  scopus
    4. Vexler A., Schisterman E.F., Liu A., “Estimation of ROC curves based on stably distributed biomarkers subject to measurement error and pooling mixtures”, Statistics in Medicine, 27:2 (2008), 280–296  crossref  mathscinet  isi  scopus
    5. Bondell H.D., Liu A., Schisterman E.F., “Statistical inference based on pooled data: A moment–based estimating equation approach”, Journal of Applied Statistics, 34:2 (2007), 129–140  crossref  mathscinet  zmath  isi  scopus
    6. Gordienko E., “Comparing the distributions of sums of independent random vectors”, Kybernetika, 41:4 (2005), 519–529  mathscinet  zmath  isi  elib
    7. D. V. Belomestny, “Reconstruction of the general distribution by the distribution of some statistics”, Theory Probab. Appl., 49:1 (2005), 1–15  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. Denis Belomestny, “Constraints on distributions imposed by properties of linear forms”, ESAIM: PS, 7 (2003), 313  crossref
    9. D. V. Belomestny, “On the Problem of Reconstructing a Summands Distribution by Their Sum”, Theory Probab. Appl., 46:2 (2002), 336–341  mathnet  mathnet  crossref  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :193
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025