Abstract:
The uniqueness and stability conditions of reconstructing a distribution of independent identically distributed random variables X1,…,XmX1,…,Xm by a distribution of the sum S=X1+⋯+XmS=X1+⋯+Xm for fixed mm are given. This paper considers two generalizations of the problem of reconstructing the random variables XjXj: by the distribution S=γ1X1+⋯+γmXmS=γ1X1+⋯+γmXm, where the random variables γjγj take values 0 and 1 with some fixed probabilities, and bythe distribution of the sum SN=X1+⋯+XNSN=X1+⋯+XN of the random number NN of summands XjXj. In these problems there are given not only sufficient stability conditions of reconstructing but quantitative stability estimators.
Keywords:
summands distribution, stability, sum of a random number of summands, linear combinations, characteristic function, Poisson distribution, geometric distribution.
Citation:
A. V. Prokhorov, N. G. Ushakov, “On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 449–462; Theory Probab. Appl., 46:3 (2002), 420–430
\Bibitem{ProUsh01}
\by A.~V.~Prokhorov, N.~G.~Ushakov
\paper On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 449--462
\mathnet{http://mi.mathnet.ru/tvp3895}
\crossref{https://doi.org/10.4213/tvp3895}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978662}
\zmath{https://zbmath.org/?q=an:1032.60010}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 420--430
\crossref{https://doi.org/10.1137/S0040585X97979202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700003}
Linking options:
https://www.mathnet.ru/eng/tvp3895
https://doi.org/10.4213/tvp3895
https://www.mathnet.ru/eng/tvp/v46/i3/p449
This publication is cited in the following 9 articles:
Vexler A., “Univariate Likelihood Projections and Characterizations of the Multivariate Normal Distribution”, J. Multivar. Anal., 179 (2020), 104643
D. V. Belomestny, A. V. Prokhorov, “Stability of characterization the independence of random variables by the independence of the linear statistics”, Theory Probab. Appl., 59:4 (2015), 672–677
Vexler A., Liu A., Schisterman E., “Nonparametric deconvolution of density estimation based on observed sums”, Journal of Nonparametric Statistics, 22:1 (2010), 23–39
Vexler A., Schisterman E.F., Liu A., “Estimation of ROC curves based on stably distributed biomarkers subject to measurement error and pooling mixtures”, Statistics in Medicine, 27:2 (2008), 280–296
Bondell H.D., Liu A., Schisterman E.F., “Statistical inference based on pooled data: A moment–based estimating equation approach”, Journal of Applied Statistics, 34:2 (2007), 129–140
Gordienko E., “Comparing the distributions of sums of independent random vectors”, Kybernetika, 41:4 (2005), 519–529
D. V. Belomestny, “Reconstruction of the general distribution by the distribution of some
statistics”, Theory Probab. Appl., 49:1 (2005), 1–15
Denis Belomestny, “Constraints on distributions imposed by properties of linear forms”, ESAIM: PS, 7 (2003), 313
D. V. Belomestny, “On the Problem of Reconstructing a Summands Distribution by Their Sum”, Theory Probab. Appl., 46:2 (2002), 336–341