Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 449–462
DOI: https://doi.org/10.4213/tvp3895
(Mi tvp3895)
 

This article is cited in 9 scientific papers (total in 9 papers)

On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum

A. V. Prokhorova, N. G. Ushakovb

a M. V. Lomonosov Moscow State University
b Institute of Microelectronics Technology and High Purity Materials, Russian Academy of Sciences
Abstract: The uniqueness and stability conditions of reconstructing a distribution of independent identically distributed random variables $X_1,\dots,X_m$ by a distribution of the sum $S=X_1+\dots+X_m$ for fixed $m$ are given. This paper considers two generalizations of the problem of reconstructing the random variables $X_j$: by the distribution $S=\gamma_1X_1+\dots+\gamma_mX_m$, where the random variables $\gamma_j$ take values 0 and 1 with some fixed probabilities, and bythe distribution of the sum $S_N=X_1+\dots+X_N$ of the random number $N$ of summands $X_j$. In these problems there are given not only sufficient stability conditions of reconstructing but quantitative stability estimators.
Keywords: summands distribution, stability, sum of a random number of summands, linear combinations, characteristic function, Poisson distribution, geometric distribution.
Received: 02.09.1999
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 420–430
DOI: https://doi.org/10.1137/S0040585X97979202
Bibliographic databases:
Language: Russian
Citation: A. V. Prokhorov, N. G. Ushakov, “On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 449–462; Theory Probab. Appl., 46:3 (2002), 420–430
Citation in format AMSBIB
\Bibitem{ProUsh01}
\by A.~V.~Prokhorov, N.~G.~Ushakov
\paper On the Problem of Reconstructing a Summands Distribution by the Distribution of Their Sum
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 449--462
\mathnet{http://mi.mathnet.ru/tvp3895}
\crossref{https://doi.org/10.4213/tvp3895}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978662}
\zmath{https://zbmath.org/?q=an:1032.60010}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 420--430
\crossref{https://doi.org/10.1137/S0040585X97979202}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700003}
Linking options:
  • https://www.mathnet.ru/eng/tvp3895
  • https://doi.org/10.4213/tvp3895
  • https://www.mathnet.ru/eng/tvp/v46/i3/p449
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024