Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2001, Volume 46, Issue 3, Pages 427–448
DOI: https://doi.org/10.4213/tvp3894
(Mi tvp3894)
 

This article is cited in 4 scientific papers (total in 4 papers)

A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data

Yu. Yu. Bakhtin

M. V. Lomonosov Moscow State University
Abstract: This paper states the convergence in distribution in some functional space to the Gaussian field with explicitly calculated parameters for transformed solutions of the multidimensional Burgers equation with initial conditions given by the associated random measure. Auxiliary moment and maximal inequalities obtained in the paper are of interest in themselves.
Keywords: nonlinear diffusion, associated random variables, moment inequalities, maximal inequalities.
Received: 21.02.2000
English version:
Theory of Probability and its Applications, 2002, Volume 46, Issue 3, Pages 387–405
DOI: https://doi.org/10.1137/S0040585X97979068
Bibliographic databases:
Language: Russian
Citation: Yu. Yu. Bakhtin, “A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data”, Teor. Veroyatnost. i Primenen., 46:3 (2001), 427–448; Theory Probab. Appl., 46:3 (2002), 387–405
Citation in format AMSBIB
\Bibitem{Bak01}
\by Yu.~Yu.~Bakhtin
\paper A Functional Central Limit Theorem for Transformed Solutions of the Multidimensional Burgers Equation with Random Initial Data
\jour Teor. Veroyatnost. i Primenen.
\yr 2001
\vol 46
\issue 3
\pages 427--448
\mathnet{http://mi.mathnet.ru/tvp3894}
\crossref{https://doi.org/10.4213/tvp3894}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1978661}
\zmath{https://zbmath.org/?q=an:1033.60020}
\transl
\jour Theory Probab. Appl.
\yr 2002
\vol 46
\issue 3
\pages 387--405
\crossref{https://doi.org/10.1137/S0040585X97979068}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000179228700001}
Linking options:
  • https://www.mathnet.ru/eng/tvp3894
  • https://doi.org/10.4213/tvp3894
  • https://www.mathnet.ru/eng/tvp/v46/i3/p427
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024