Loading [MathJax]/jax/output/SVG/config.js
Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 2, Pages 374–381
DOI: https://doi.org/10.4213/tvp3669
(Mi tvp3669)
 

This article is cited in 10 scientific papers (total in 10 papers)

Short Communications

Second-order and bootstrap approximation to Student's $t$-statistic

M. Bloznelisa, H. Putterb

a The Faculty of Mathematics and Informatics, Vilnius University
b Leiden University
Abstract: We prove the validity of one-term Edgeworth expansion for Student's $t$-statistic under minimal conditions: the distribution of observations is nonlattice and has finite third moment. As a corollary we obtain the second-order correctness for the bootstrap of Student's t-statistic under these optimal conditions, thus extending classical result of Singh [Ann. Statist., 9 (1981), pp. 1187–1195] to the Studentized mean.
Keywords: Student test, Edgeworth expansion, bootstrap, asymptotic expansion, self-normalized sum.
Received: 13.05.1999
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 2, Pages 300–307
DOI: https://doi.org/10.1137/S0040585X97979743
Bibliographic databases:
Document Type: Article
Language: English
Citation: M. Bloznelis, H. Putter, “Second-order and bootstrap approximation to Student's $t$-statistic”, Teor. Veroyatnost. i Primenen., 47:2 (2002), 374–381; Theory Probab. Appl., 47:2 (2003), 300–307
Citation in format AMSBIB
\Bibitem{BloPut02}
\by M.~Bloznelis, H.~Putter
\paper Second-order and bootstrap approximation to Student's $t$-statistic
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 2
\pages 374--381
\mathnet{http://mi.mathnet.ru/tvp3669}
\crossref{https://doi.org/10.4213/tvp3669}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2003205}
\zmath{https://zbmath.org/?q=an:1036.62007}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 2
\pages 300--307
\crossref{https://doi.org/10.1137/S0040585X97979743}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183800700009}
Linking options:
  • https://www.mathnet.ru/eng/tvp3669
  • https://doi.org/10.4213/tvp3669
  • https://www.mathnet.ru/eng/tvp/v47/i2/p374
  • This publication is cited in the following 10 articles:
    1. Pascal Beckedorf, Angelika Rohde, “Non-uniform Bounds and Edgeworth Expansions in Self-normalized Limit Theorems”, J Theor Probab, 38:1 (2025)  crossref
    2. Shakeeb Khan, Denis Nekipelov, “On uniform inference in nonlinear models with endogeneity”, Journal of Econometrics, 240:2 (2024), 105261  crossref
    3. Shao Q.-m., Zhou W.-x., “Self-Normalization: Taming a Wild Population in a Heavy-Tailed World”, Appl. Math.-J. Chin. Univ. Ser. B, 32:3 (2017), 253–269  crossref  mathscinet  zmath  isi  scopus
    4. Qi-Man Shao, Qiying Wang, “Self-normalized limit theorems: A survey”, Probab. Surveys, 10:none (2013)  crossref
    5. Wang Q., “Refined Self-normalized Large Deviations for Independent Random Variables”, J Theoret Probab, 24:2 (2011), 307–329  crossref  mathscinet  zmath  isi  scopus
    6. C&H/CRC Monographs on Statistics & Applied Probability, 20114852, Extreme Value Methods with Applications to Finance, 2011, 351  crossref
    7. Jing B.-Y., Wang Q., “A Unified Approach to Edgeworth Expansions for a General Class of Statistics”, Stat Sin, 20:2 (2010), 613–636  mathscinet  zmath  isi
    8. Wang Qiying, Hall P., “Relative errors in central limit theorems for Student's $t$ statistic, with applications”, Statist. Sinica, 19:1 (2009), 343–354  mathscinet  zmath  isi
    9. S. Yu. Novak, “On self-normalized sums and Student's statistic”, Theory Probab. Appl., 49:2 (2005), 336–344  mathnet  crossref  crossref  mathscinet  zmath  isi
    10. Hall P., Wang Qiying, “Exact convergence rate and leading term in central limit theorem for Student's $t$ statistic”, Ann. Probab., 32:2 (2004), 1419–1437  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:485
    Full-text PDF :182
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025