Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 2002, Volume 47, Issue 2, Pages 381–387
DOI: https://doi.org/10.4213/tvp3670
(Mi tvp3670)
 

This article is cited in 9 scientific papers (total in 9 papers)

Short Communications

Rate of convergence to the semi-circular law for the Gaussian unitary ensemble

F. Götzea, A. N. Tikhomirovb

a Bielefeld University, Department of Mathematics
b Syktyvkar State University
Full-text PDF (630 kB) Citations (9)
Abstract: It is shown that the Kolmogorov distance between the expected spectral distribution function of an $n\times n$ Wigner matrix with Gaussian elements and the distribution function of the semicircular law is of order $O(n^{-2/3})$.
Keywords: independent random variables, spectral distribution, random matrix.
Received: 08.02.2002
English version:
Theory of Probability and its Applications, 2003, Volume 47, Issue 2, Pages 323–330
DOI: https://doi.org/10.1137/S0040585X97979755
Bibliographic databases:
Document Type: Article
Language: English
Citation: F. Götze, A. N. Tikhomirov, “Rate of convergence to the semi-circular law for the Gaussian unitary ensemble”, Teor. Veroyatnost. i Primenen., 47:2 (2002), 381–387; Theory Probab. Appl., 47:2 (2003), 323–330
Citation in format AMSBIB
\Bibitem{GotTik02}
\by F.~G\"otze, A.~N.~Tikhomirov
\paper Rate of convergence to the semi-circular law for the Gaussian unitary ensemble
\jour Teor. Veroyatnost. i Primenen.
\yr 2002
\vol 47
\issue 2
\pages 381--387
\mathnet{http://mi.mathnet.ru/tvp3670}
\crossref{https://doi.org/10.4213/tvp3670}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2003206}
\zmath{https://zbmath.org/?q=an:1041.60033}
\transl
\jour Theory Probab. Appl.
\yr 2003
\vol 47
\issue 2
\pages 323--330
\crossref{https://doi.org/10.1137/S0040585X97979755}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000183800700012}
Linking options:
  • https://www.mathnet.ru/eng/tvp3670
  • https://doi.org/10.4213/tvp3670
  • https://www.mathnet.ru/eng/tvp/v47/i2/p381
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :166
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024