Abstract:
In this note we examine the behavior of the invariant measure με(v)=∫vpε(x)dx of a Markov process, when the diffusion coefficient is a small parameter.In the case when the bounded dynamical system has an invariant measure with density p0(x) we have shown that limε→0pε(x)=p0(x). We have investigated the case when the bounded dynamical system has a stable position. Theorem 3 allows one to find the points in which the whole measure με(v) is concentrated as ε→0.
Citation:
M. B. Nevel'son, “Sur le comportement de la mesure invariante du procès de diffusion avec petit diffusion”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 139–146; Theory Probab. Appl., 9:1 (1964), 125–131
\Bibitem{Nev64}
\by M.~B.~Nevel'son
\paper Sur le comportement de la mesure invariante du proc\`es de diffusion avec petit diffusion
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 1
\pages 139--146
\mathnet{http://mi.mathnet.ru/tvp352}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=162266}
\zmath{https://zbmath.org/?q=an:0134.34501}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 1
\pages 125--131
\crossref{https://doi.org/10.1137/1109016}
Linking options:
https://www.mathnet.ru/eng/tvp352
https://www.mathnet.ru/eng/tvp/v9/i1/p139
This publication is cited in the following 5 articles:
Huang W. Ji M. Liu Zh. Yi Y., “Concentration and Limit Behaviors of Stationary Measures”, Physica D, 369 (2018), 1–17
Huang W. Ji M. Liu Zh. Yi Y., “Stochastic Stability of Measures in Gradient Systems”, Physica D, 314 (2016), 9–17
Manuel Núñez, “On the final configuration of a plane magnetic field dragged by a highly conducting fluid and anchored at the boundary”, Physics Letters A, 378:41 (2014), 3041
Laurent Miclo, “Recuit simulésans potentiel sur une variétériemannienne compacte”, Stochastics and Stochastic Reports, 41:1-2 (1992), 23
B. J. Matkowsky, Z. Schuss, C. Tier, “Diffusion Across Characteristic Boundaries with Critical Points”, SIAM J. Appl. Math., 43:4 (1983), 673