|
Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 1, Pages 133–139
(Mi tvp351)
|
|
|
|
This article is cited in 19 scientific papers (total in 19 papers)
Short Communications
Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a Small Parameter
M. I. Freĭdlin Moscow
Abstract:
This paper studies the limiting behavior of the solution $u^\varepsilon(x)$ of Dirichlet's problem for
$$
L^\varepsilon u^\varepsilon=\frac12\sum a_{ij}\left(\frac x\varepsilon\right)\frac{\partial^2 u^\varepsilon}{\partial x^i\partial x^j}+\sum b_i\left(\frac x\varepsilon\right)\frac{\partial u^\varepsilon}{\partial x^i}-c\left(\frac x\varepsilon\right)u^\varepsilon=0,
$$
when $\varepsilon\to 0$. The coefficients of the operator $L^1$ are assumed to be periodic. It is proved that $\lim\limits_{\varepsilon\to 0}u^\varepsilon(x)=u(x)$ exists. The function $u(x)$ is a solution of Dirichlet's problem for the equation $\bar Lu=0$, where the coefficients of the operator $\bar L$ are obtained by averaging the coefficients of the operator $L^\varepsilon$.
Received: 25.05.1963
Citation:
M. I. Freǐdlin, “Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a Small Parameter”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 133–139; Theory Probab. Appl., 9:1 (1964), 121–125
Linking options:
https://www.mathnet.ru/eng/tvp351 https://www.mathnet.ru/eng/tvp/v9/i1/p133
|
Statistics & downloads: |
Abstract page: | 329 | Full-text PDF : | 168 |
|