Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1964, Volume 9, Issue 1, Pages 133–139 (Mi tvp351)  

This article is cited in 19 scientific papers (total in 19 papers)

Short Communications

Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a Small Parameter

M. I. Freĭdlin

Moscow
Abstract: This paper studies the limiting behavior of the solution $u^\varepsilon(x)$ of Dirichlet's problem for
$$ L^\varepsilon u^\varepsilon=\frac12\sum a_{ij}\left(\frac x\varepsilon\right)\frac{\partial^2 u^\varepsilon}{\partial x^i\partial x^j}+\sum b_i\left(\frac x\varepsilon\right)\frac{\partial u^\varepsilon}{\partial x^i}-c\left(\frac x\varepsilon\right)u^\varepsilon=0, $$
when $\varepsilon\to 0$. The coefficients of the operator $L^1$ are assumed to be periodic. It is proved that $\lim\limits_{\varepsilon\to 0}u^\varepsilon(x)=u(x)$ exists. The function $u(x)$ is a solution of Dirichlet's problem for the equation $\bar Lu=0$, where the coefficients of the operator $\bar L$ are obtained by averaging the coefficients of the operator $L^\varepsilon$.
Received: 25.05.1963
English version:
Theory of Probability and its Applications, 1964, Volume 9, Issue 1, Pages 121–125
DOI: https://doi.org/10.1137/1109015
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. I. Freǐdlin, “Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a Small Parameter”, Teor. Veroyatnost. i Primenen., 9:1 (1964), 133–139; Theory Probab. Appl., 9:1 (1964), 121–125
Citation in format AMSBIB
\Bibitem{Fre64}
\by M.~I.~Fre{\v\i}dlin
\paper Dirichlet's Problem for an Equation with Periodical Coefficients Depending on a~Small Parameter
\jour Teor. Veroyatnost. i Primenen.
\yr 1964
\vol 9
\issue 1
\pages 133--139
\mathnet{http://mi.mathnet.ru/tvp351}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=163062}
\zmath{https://zbmath.org/?q=an:0138.11602}
\transl
\jour Theory Probab. Appl.
\yr 1964
\vol 9
\issue 1
\pages 121--125
\crossref{https://doi.org/10.1137/1109015}
Linking options:
  • https://www.mathnet.ru/eng/tvp351
  • https://www.mathnet.ru/eng/tvp/v9/i1/p133
  • This publication is cited in the following 19 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:329
    Full-text PDF :168
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024