Abstract:
Let, for every n=1,2,…, random variables Xns, 1⩽s⩽n, form a Markov chain with transition functions Qnt, 1⩽t⩽n−1. We denote
Sn=∑sXns,Fn(x)=P(Sn<x√DSn),αn=mintα(Qnt),
where α(Qnt) is the ergodicity coefficient of Qnt.
Theorem. {\em If
|Xns|⩽C,EXns=0,DXns⩾c,αnn1/3/lnn→∞,
then, for every p⩾0,
∫∞−∞|x|pFn(dx)
converges to the pth absolute moment of} N(0,1).
Citation:
В. A. Lifšic, “Convergence of moments in the central limit theorem for nonstationary Markov chains”, Teor. Veroyatnost. i Primenen., 20:4 (1975), 755–771; Theory Probab. Appl., 20:4 (1976), 741–758