Abstract:
For a general class of statistics Tn defined by a relation of the form
n∑i=1ψ(Xi,Tn)=0,
where Xi are observations, a number of results is proved which show that Tn (or, in some cases, their appropriate modifications T∗n) are locally asymptotically minimax estimates of the corresponding functional Φ(F) of the unknown distribution F provided the family of all admissible distributions F is sufficiently large.
Citation:
B. Ya. Levit, “On efficiency of a class of non-parametric estimates”, Teor. Veroyatnost. i Primenen., 20:4 (1975), 738–754; Theory Probab. Appl., 20:4 (1976), 723–740
\Bibitem{Lev75}
\by B.~Ya.~Levit
\paper On efficiency of a~class of non-parametric estimates
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 4
\pages 738--754
\mathnet{http://mi.mathnet.ru/tvp3338}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=403052}
\zmath{https://zbmath.org/?q=an:0367.62041}
\transl
\jour Theory Probab. Appl.
\yr 1976
\vol 20
\issue 4
\pages 723--740
\crossref{https://doi.org/10.1137/1120081}
Linking options:
https://www.mathnet.ru/eng/tvp3338
https://www.mathnet.ru/eng/tvp/v20/i4/p738
This publication is cited in the following 41 articles:
Vladimir Koltchinskii, “Estimation of smooth functionals of covariance operators: Jackknife bias reduction and bounds in terms of effective rank”, Ann. Inst. H. Poincaré Probab. Statist., 61:1 (2025)
Tijana Zrnic, Emmanuel J. Candès, “Cross-prediction-powered inference”, Proc. Natl. Acad. Sci. U.S.A., 121:15 (2024)
HUI CHEN, WINSTON WEI DOU, LEONID KOGAN, “Measuring “Dark Matter” in Asset Pricing Models”, The Journal of Finance, 79:2 (2024), 843
Vladimir Koltchinskii, Martin Wahl, Progress in Probability, 80, High Dimensional Probability IX, 2023, 393
Oluwagbenga David Agboola, Han Yu, “Neighborhood-based cross fitting approach to treatment effects with high-dimensional data”, Computational Statistics & Data Analysis, 186 (2023), 107780
Dylan J. Foster, Vasilis Syrgkanis, “Orthogonal statistical learning”, Ann. Statist., 51:3 (2023)
Vladimir Koltchinskii, “Estimation of smooth functionals in high-dimensional models: Bootstrap chains and Gaussian approximation”, Ann. Statist., 50:4 (2022)
Bruce E. Hansen, “A Modern Gauss–Markov Theorem”, ECTA, 90:3 (2022), 1283
Vladimir Koltchinskii, Mayya Zhilova, “Estimation of smooth functionals in normal models: Bias reduction and asymptotic efficiency”, Ann. Statist., 49:5 (2021)
Vladimir Koltchinskii, Mayya Zhilova, “Efficient estimation of smooth functionals in Gaussian shift models”, Ann. Inst. H. Poincaré Probab. Statist., 57:1 (2021)
Richard Berk, Andreas Buja, Lawrence Brown, Edward George, Arun Kumar Kuchibhotla, Weijie Su, Linda Zhao, “Assumption Lean Regression”, The American Statistician, 75:1 (2021), 76
Vladimir Koltchinskii, Mayya Zhilova, “Estimation of Smooth Functionals of Location Parameter in Gaussian and Poincaré Random Shift Models”, Sankhya A, 83:2 (2021), 569
Prosper Dovonon, Yves F. Atchadé, “Efficiency bounds for semiparametric models with singular score functions”, Econometric Reviews, 39:6 (2020), 612
Chris A.J. Klaassen, Nanang Susyanto, “Semiparametrically efficient estimation of Euclidean parameters under equality constraints”, Journal of Statistical Planning and Inference, 201 (2019), 120
Victor Chernozhukov, Denis Chetverikov, Mert Demirer, Esther Duflo, Christian Hansen, Whitney Newey, James Robins, “Double/debiased machine learning for treatment and structural parameters”, The Econometrics Journal, 21:1 (2018), C1
Marco Carone, Iván Díaz, Mark J. van der Laan, Springer Series in Statistics, Targeted Learning in Data Science, 2018, 483
Sherri Rose, Mark J. van der Laan, Springer Series in Statistics, Targeted Learning in Data Science, 2018, 3
Laura B. Balzer, Mark J. van der Laan, Maya L. Petersen, Springer Series in Statistics, Targeted Learning in Data Science, 2018, 195
Johann Pfanzagl, Springer Series in Statistics, Mathematical Statistics, 2017, 107
Hui Chen, Winston Wei Dou, Leonid Kogan, “Measuring the 'Dark Matter' in Asset Pricing Models”, SSRN Journal, 2013