Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 1, Pages 181–182 (Mi tvp3008)  

This article is cited in 8 scientific papers (total in 8 papers)

Short Communications

An estimation of probabilites of large deviations for a critical Galton–Watson process

S. V. Nagaev, N. V. Vakhrushev

Novosibirsk
Full-text PDF (130 kB) Citations (8)
Abstract: Let Zn, n=0,1,, be a critical Galton–Watson process with Z0=1. An estimation of P(Zn>k) is obtained for every k>0 under the assumption that P(Z1>k)<eαk, α>0.
Received: 11.07.1974
English version:
Theory of Probability and its Applications, 1975, Volume 20, Issue 1, Pages 179–180
DOI: https://doi.org/10.1137/1120020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Nagaev, N. V. Vakhrushev, “An estimation of probabilites of large deviations for a critical Galton–Watson process”, Teor. Veroyatnost. i Primenen., 20:1 (1975), 181–182; Theory Probab. Appl., 20:1 (1975), 179–180
Citation in format AMSBIB
\Bibitem{NagVak75}
\by S.~V.~Nagaev, N.~V.~Vakhrushev
\paper An estimation of probabilites of large deviations for a~critical Galton--Watson process
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 1
\pages 181--182
\mathnet{http://mi.mathnet.ru/tvp3008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=370807}
\zmath{https://zbmath.org/?q=an:0356.60043}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 20
\issue 1
\pages 179--180
\crossref{https://doi.org/10.1137/1120020}
Linking options:
  • https://www.mathnet.ru/eng/tvp3008
  • https://www.mathnet.ru/eng/tvp/v20/i1/p181
  • This publication is cited in the following 8 articles:
    1. Ibrahim Rahimov, “Homogeneous Branching Processes with Non-Homogeneous Immigration”, Stochastics and Quality Control, 36:2 (2021), 165  crossref
    2. Li D.D. Zhang M., “Asymptotic Behaviors For Critical Branching Processes With Immigration”, Acta. Math. Sin.-English Ser., 35:4 (2019), 537–549  crossref  mathscinet  zmath  isi  scopus
    3. Gourab Ray, “Large unicellular maps in high genus”, Ann. Inst. H. Poincaré Probab. Statist., 51:4 (2015)  crossref
    4. S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640  mathnet  crossref  crossref  isi  elib
    5. V. I. Vakhtel', “Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails”, Theory Probab. Appl., 52:4 (2008), 674–688  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. S. V. Nagaev, V. I. Vakhtel', “Probability inequalities for the Galton–Watson critical process”, Theory Probab. Appl., 50:2 (2006), 225–247  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    7. S. V. Nagaev, V. I. Vakhtel', “Limit theorems for probabilities of large deviations of a Galton-Watson process”, Discrete Math. Appl., 13:1 (2003), 1–26  mathnet  crossref  crossref  mathscinet  zmath
    8. G. D. Makarov, “Large deviations for a critical Galton–Watson process”, Theory Probab. Appl., 25:3 (1981), 481–492  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :101
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025