Abstract:
Let Zn, n=0,1,…, be a critical Galton–Watson process with Z0=1. An estimation of P(Zn>k) is obtained for every k>0 under the assumption that P(Z1>k)<e−αk, α>0.
Citation:
S. V. Nagaev, N. V. Vakhrushev, “An estimation of probabilites of large deviations for a critical Galton–Watson process”, Teor. Veroyatnost. i Primenen., 20:1 (1975), 181–182; Theory Probab. Appl., 20:1 (1975), 179–180
\Bibitem{NagVak75}
\by S.~V.~Nagaev, N.~V.~Vakhrushev
\paper An estimation of probabilites of large deviations for a~critical Galton--Watson process
\jour Teor. Veroyatnost. i Primenen.
\yr 1975
\vol 20
\issue 1
\pages 181--182
\mathnet{http://mi.mathnet.ru/tvp3008}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=370807}
\zmath{https://zbmath.org/?q=an:0356.60043}
\transl
\jour Theory Probab. Appl.
\yr 1975
\vol 20
\issue 1
\pages 179--180
\crossref{https://doi.org/10.1137/1120020}
Linking options:
https://www.mathnet.ru/eng/tvp3008
https://www.mathnet.ru/eng/tvp/v20/i1/p181
This publication is cited in the following 8 articles:
Ibrahim Rahimov, “Homogeneous Branching Processes with Non-Homogeneous Immigration”, Stochastics and Quality Control, 36:2 (2021), 165
Li D.D. Zhang M., “Asymptotic Behaviors For Critical Branching Processes With Immigration”, Acta. Math. Sin.-English Ser., 35:4 (2019), 537–549
Gourab Ray, “Large unicellular maps in high genus”, Ann. Inst. H. Poincaré Probab. Statist., 51:4 (2015)
S. V. Nagaev, “Probability inequalities for Galton–Watson processes”, Theory Probab. Appl., 59:4 (2015), 611–640
V. I. Vakhtel', “Limit Theorems for Probabilities of Large Deviations of a Critical Galton–Watson Process Having Power Tails”, Theory Probab. Appl., 52:4 (2008), 674–688
S. V. Nagaev, V. I. Vakhtel', “Probability inequalities for the Galton–Watson critical process”, Theory Probab. Appl., 50:2 (2006), 225–247
S. V. Nagaev, V. I. Vakhtel', “Limit theorems for probabilities of large deviations of a Galton-Watson process”, Discrete Math. Appl., 13:1 (2003), 1–26
G. D. Makarov, “Large deviations for a critical Galton–Watson process”, Theory Probab. Appl., 25:3 (1981), 481–492