|
Teoriya Veroyatnostei i ee Primeneniya, 1975, Volume 20, Issue 1, Pages 182–187
(Mi tvp3009)
|
|
|
|
This article is cited in 1 scientific paper (total in 1 paper)
Short Communications
On a class of branching processes
I. I. Ezhov, A. A. Shahbazov Kiev
Abstract:
We study $\lim\limits_{n\to\infty}\mathbf P\{z_n=0\}$ (the probability of “degeneration”) where
1) $z_n=\sum\limits_{k=1}^{[z_{n-1}/a]}\xi_k+z_{n-1}-a[z_{n-1}/a]$, $n\ge1$
2) $a$ is a positive integer;
3) $\xi_n\ge0$ $(n\ge1)$ is a sequence of independent identically distributed integer-valued random variables.
If $a=1$, the sequence $\{z_n,n\ge0\}$ is an usual Galton–Watson branching process.
Received: 05.05.1974
Citation:
I. I. Ezhov, A. A. Shahbazov, “On a class of branching processes”, Teor. Veroyatnost. i Primenen., 20:1 (1975), 182–187; Theory Probab. Appl., 20:1 (1975), 180–185
Linking options:
https://www.mathnet.ru/eng/tvp3009 https://www.mathnet.ru/eng/tvp/v20/i1/p182
|
|