Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 288–319 (Mi tvp2296)  

This article is cited in 21 scientific papers (total in 22 papers)

Weak and strong convergence of distributions of counting processes

Yu. M. Kabanov, R. Š. Lipcer, A. N. Širyaev

Moscow
Abstract: The theme of the article is the convergence of distributions of counting processes. The paper contains several theorems connecting the convergence of predictable characteristics (compensators) with the convergence of distributions. If the limit process has independent (or conditionally independent) increments, we use the method of «strochastic exponentials»; by means of this method we obtain an estimate of the rate of convergence of finite-dimensional distributions to the corresponding distributions of the Poisson process. Techniques based on the compactness criterion in used to prove a weak convergence to a counting process with a (random) continuous compensator. We present also a criterion for the convergence in variation together with the estimates of the rate of convergence. As an illustration we investigate the strong convergence of conditionally Poisson processes with intensities depending on a Markov process. Another example is an estimate of the rate of convergence of counting processes connected with the empirical distribution functions to the Poisson process.
Received: 09.12.1982
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 303–336
DOI: https://doi.org/10.1137/1128026
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Yu. M. Kabanov, R. Š. Lipcer, A. N. Širyaev, “Weak and strong convergence of distributions of counting processes”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 288–319; Theory Probab. Appl., 28:2 (1984), 303–336
Citation in format AMSBIB
\Bibitem{KabLipShi83}
\by Yu.~M.~Kabanov, R.~{\v S}.~Lipcer, A.~N.~{\v S}iryaev
\paper Weak and strong convergence of distributions of counting processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 288--319
\mathnet{http://mi.mathnet.ru/tvp2296}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700211}
\zmath{https://zbmath.org/?q=an:0533.60055|0516.60056}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 303--336
\crossref{https://doi.org/10.1137/1128026}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900006}
Linking options:
  • https://www.mathnet.ru/eng/tvp2296
  • https://www.mathnet.ru/eng/tvp/v28/i2/p288
  • This publication is cited in the following 22 articles:
    1. V. M. Abramov, B. M. Miller, E. Ya. Rubinovich, P. Yu. Chiganskii, “Razvitie teorii stokhasticheskogo upravleniya i filtratsii v rabotakh R. Sh. Liptsera”, Avtomat. i telemekh., 2020, no. 3, 3–13  mathnet  crossref
    2. S. Y. Novak, “Poisson approximation”, Probab. Surveys, 16:none (2019)  crossref
    3. Hye-Won Kang, Thomas G. Kurtz, “Separation of time-scales and model reduction for stochastic reaction networks”, Ann. Appl. Probab., 23:2 (2013)  crossref
    4. James Ledoux, “A Poisson Limit Theorem for Reliability Models Based on Markov Chains”, Communications in Statistics - Theory and Methods, 35:1 (2006), 173  crossref
    5. Jean-Bernard Gravereaux, James Ledoux, “Poisson approximation for some point processes in reliability”, Advances in Applied Probability, 36:2 (2004), 455  crossref
    6. James Ledoux, Handbook of Reliability Engineering, 2003, 213  crossref
    7. Aihua Xia, “Poisson approximation, compensators and coupling”, Stochastic Analysis and Applications, 18:1 (2000), 159  crossref
    8. Bronius Grigelionis, “On mixed poisson processes and martingales”, Scandinavian Actuarial Journal, 1998:1 (1998), 81  crossref
    9. G.B. Di masi, M.Kabanov Yu, “A first order approximation forthe convergence of distributionsof the cox processes with”, Stochastics and Stochastic Reports, 54:3-4 (1995), 211  crossref
    10. Hans-Jürgen Witte, “On the optimality of multivariate Poisson approximation”, Stochastic Processes and their Applications, 44:1 (1993), 75  crossref
    11. Xia Aihua, “A note on the prohorov distance between a counting process and a poisson process”, Stochastics and Stochastic Reports, 45:1-2 (1993), 61  crossref
    12. Aihua Xia, Lecture Notes in Mathematics, 1526, Séminaire de Probabilités XXVI, 1992, 32  crossref
    13. Martti Nikunen, Esko Valkeila, “A prohorov bound for a poisson process and an arbitrary counting process with some applications”, Stochastics and Stochastic Reports, 37:3 (1991), 133  crossref
    14. V. I. Pagurova, S. A. Nesterova, “Weak convergence of counting processes in the presence of nuisance parameters”, Theory Probab. Appl., 36:1 (1991), 176–185  mathnet  mathnet  crossref  isi
    15. Richard F. Serfozo, Handbooks in Operations Research and Management Science, 2, Stochastic Models, 1990, 1  crossref
    16. Paul Deheuvels, Dietmar Pfeifer, “Poisson approximations of multinomial distributions and point processes”, Journal of Multivariate Analysis, 25:1 (1988), 65  crossref
    17. Martti Nikunen, Esko Valkeila, “On the Levy-Prohorov distance between counting processes”, Stochastic Processes and their Applications, 26 (1987), 190  crossref
    18. A. A. Grusho, “On Distributions of U-Statistics”, Theory Probab. Appl., 32:2 (1987), 369–373  mathnet  mathnet  crossref  isi
    19. Richard F Serfozo, “Partitions of point processes: Multivariate poisson approximations”, Stochastic Processes and their Applications, 20:2 (1985), 281  crossref
    20. Yu. M. Kabanov, “An estimate of the variation distance between probability measures”, Theory Probab. Appl., 30:2 (1986), 413–417  mathnet  mathnet  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:553
    Full-text PDF :349
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025