Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1983, Volume 28, Issue 2, Pages 320–332 (Mi tvp2297)  

This article is cited in 5 scientific papers (total in 5 papers)

On stably weak convergence of semimartingales and point processes

B. I. Grigelionis, R. A. Mikulevičius

Vilnius
Abstract: Let $\{X_n,\,n=1,2,\dots\}$ be a sequence of random elements defined on the probability space $(\Omega,\mathscr F,\mathbf P)$ and taking values in the separable metric space $\mathfrak X$. Let $\mathscr G$ be a $\sigma$-subalgebra of $\mathscr F$. We find general conditions for the sequence $\{X_n,\,n=1,2,\dots\}$ to converge $\mathscr G$-stably; weakly, i. e. for the sequence $\{\mathbf E[\chi_Af(X_n)],\,n=1,2,\dots\}$ to converge for each $A\in\mathscr G$ and for each continuous bounded function $f$ on $\mathfrak X$. The cases of $\mathscr G$-stably weak convergence of semimartingales and point processes are investigated in detail.
Received: 24.02.1981
English version:
Theory of Probability and its Applications, 1984, Volume 28, Issue 2, Pages 337–350
DOI: https://doi.org/10.1137/1128027
Bibliographic databases:
Language: Russian
Citation: B. I. Grigelionis, R. A. Mikulevičius, “On stably weak convergence of semimartingales and point processes”, Teor. Veroyatnost. i Primenen., 28:2 (1983), 320–332; Theory Probab. Appl., 28:2 (1984), 337–350
Citation in format AMSBIB
\Bibitem{GriMik83}
\by B.~I.~Grigelionis, R.~A.~Mikulevi{\v{c}}ius
\paper On stably weak convergence of semimartingales and point processes
\jour Teor. Veroyatnost. i Primenen.
\yr 1983
\vol 28
\issue 2
\pages 320--332
\mathnet{http://mi.mathnet.ru/tvp2297}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=700212}
\zmath{https://zbmath.org/?q=an:0533.60054|0513.60049}
\transl
\jour Theory Probab. Appl.
\yr 1984
\vol 28
\issue 2
\pages 337--350
\crossref{https://doi.org/10.1137/1128027}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1984SS85900007}
Linking options:
  • https://www.mathnet.ru/eng/tvp2297
  • https://www.mathnet.ru/eng/tvp/v28/i2/p320
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:193
    Full-text PDF :87
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024