Teoriya Veroyatnostei i ee Primeneniya
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



Teor. Veroyatnost. i Primenen.:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoriya Veroyatnostei i ee Primeneniya, 1991, Volume 36, Issue 4, Pages 645–659 (Mi tvp1773)  

This article is cited in 111 scientific papers (total in 111 papers)

Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates

O. V. Lepskii
Received: 09.01.1989
English version:
Theory of Probability and its Applications, 1991, Volume 36, Issue 4, Pages 682–697
DOI: https://doi.org/10.1137/1136085
Bibliographic databases:
Language: Russian
Citation: O. V. Lepskii, “Asymptotically minimax adaptive estimation. I. Upper bounds. Optimally adaptive estimates”, Teor. Veroyatnost. i Primenen., 36:4 (1991), 645–659; Theory Probab. Appl., 36:4 (1991), 682–697
Citation in format AMSBIB
\Bibitem{Lep91}
\by O.~V.~Lepskii
\paper Asymptotically minimax adaptive estimation. I.~Upper bounds. Optimally adaptive estimates
\jour Teor. Veroyatnost. i Primenen.
\yr 1991
\vol 36
\issue 4
\pages 645--659
\mathnet{http://mi.mathnet.ru/tvp1773}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1147167}
\zmath{https://zbmath.org/?q=an:0776.62039|0738.62045}
\transl
\jour Theory Probab. Appl.
\yr 1991
\vol 36
\issue 4
\pages 682--697
\crossref{https://doi.org/10.1137/1136085}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1991KG46300003}
Linking options:
  • https://www.mathnet.ru/eng/tvp1773
  • https://www.mathnet.ru/eng/tvp/v36/i4/p645
    Cycle of papers
    This publication is cited in the following 111 articles:
    1. Yaroslav Averyanov, Alain Celisse, “Minimum discrepancy principle strategy for choosing k in k-NN regression”, Mach Learn, 114:5 (2025)  crossref
    2. Thorsten Hohage, Pierre Maréchal, Léopold Simar, Anne Vanhems, “A MOLLIFIER APPROACH TO THE DECONVOLUTION OF PROBABILITY DENSITIES”, Econom. Theory, 40:2 (2024), 320  crossref
    3. Weidong Liu, Xiaojun Mao, Xiaofei Zhang, Xin Zhang, “Robust Personalized Federated Learning with Sparse Penalization”, Journal of the American Statistical Association, 2024, 1  crossref
    4. Changxiao Cai, T. Tony Cai, Hongzhe Li, “Transfer learning for contextual multi-armed bandits”, Ann. Statist., 52:1 (2024)  crossref
    5. Sergios Agapiou, Ismaël Castillo, “Heavy-tailed Bayesian nonparametric adaptation”, Ann. Statist., 52:4 (2024)  crossref
    6. Veeranjaneyulu Sadhanala, Yu-Xiang Wang, Addison J. Hu, Ryan J. Tibshirani, “Multivariate trend filtering for lattice data”, Ann. Statist., 52:5 (2024)  crossref
    7. Dominik Rothenhäusler, “Model selection and inference for estimation of causal parameters”, Electron. J. Statist., 18:2 (2024)  crossref
    8. Anton Rask Lundborg, Ilmun Kim, Rajen D. Shah, Richard J. Samworth, “The projected covariance measure for assumption-lean variable significance testing”, Ann. Statist., 52:6 (2024)  crossref
    9. Mathieu Sart, “Density estimation under local differential privacy and Hellinger loss”, Bernoulli, 29:3 (2023)  crossref
    10. Yuchen Hu, Stefan Wager, “Off-policy evaluation in partially observed Markov decision processes under sequential ignorability”, Ann. Statist., 51:4 (2023)  crossref
    11. Peiliang Zhang, Zhao Ren, “Adaptive minimax density estimation on ℝd for Huber's contamination model”, Information and Inference: A Journal of the IMA, 12:4 (2023), 3042  crossref
    12. Yang Ning, Guang Cheng, “Sparse confidence sets for normal mean models”, Information and Inference: A Journal of the IMA, 12:3 (2023), 1193  crossref
    13. Matias D. Cattaneo, Yingjie Feng, William G. Underwood, “Uniform Inference for Kernel Density Estimators with Dyadic Data”, Journal of the American Statistical Association, 2023, 1  crossref
    14. Luc Devroye, Silvio Lattanzi, Gábor Lugosi, Nikita Zhivotovskiy, “On mean estimation for heteroscedastic random variables”, Ann. Inst. H. Poincaré Probab. Statist., 59:1 (2023)  crossref
    15. Cathrine Aeckerle-Willems, Claudia Strauch, “Sup-norm adaptive drift estimation for multivariate nonreversible diffusions”, Ann. Statist., 50:6 (2022)  crossref
    16. Alexander Goldenshluger, Oleg V. Lepski, “Minimax estimation of norms of a probability density: II. Rate-optimal estimation procedures”, Bernoulli, 28:2 (2022)  crossref
    17. Jules Depersin, Guillaume Lecué, “Robust sub-Gaussian estimation of a mean vector in nearly linear time”, Ann. Statist., 50:1 (2022)  crossref
    18. Arnak S. Dalalyan, Arshak Minasyan, “All-in-one robust estimator of the Gaussian mean”, Ann. Statist., 50:2 (2022)  crossref
    19. Yonatan Gur, Ahmadreza Momeni, Stefan Wager, “Smoothness-Adaptive Contextual Bandits”, Operations Research, 70:6 (2022), 3198  crossref
    20. Page S. T. E. P. H. E. N. Grunewalder S. T. E. F. F. E. N., “The Goldenshluger-Lepski Method For Constrained Least-Squares Estimators Over Rkhss”, Bernoulli, 27:4 (2021), 2241–2266  crossref  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теория вероятностей и ее применения Theory of Probability and its Applications
    Statistics & downloads:
    Abstract page:695
    Full-text PDF :352
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025