Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 1, Pages 3–22
DOI: https://doi.org/10.4213/tmf9984
(Mi tmf9984)
 

This article is cited in 9 scientific papers (total in 9 papers)

Projectors on invariant subspaces of representations ad2ad2 of Lie algebras so(N) and sp(2r) and Vogel parameterization

A. P. Isaevab, A. A. Provorovac

a Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
b Faculty of Physics, Lomonosov Moscow State University, Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
Full-text PDF (585 kB) Citations (9)
References:
Abstract: Using the split Casimir operator, we find explicit formulas for the projectors onto invariant subspaces of the ad2 representation of the algebras so(N) and sp(2r). We also consider these projectors from the standpoint of the universal description of complex simple Lie algebras using the Vogel parameterization.
Keywords: invariant subspace, projector, simple Lie algebra, split Casimir operator, Vogel parameter.
Funding agency Grant number
Russian Foundation for Basic Research 20-52-12003\20
19-01-00726
The research of A. P. Isaev was supported by the Russian Foundation for Basic Research (Grant No. 19-01-00726).
The research of A. A. Provorov was supported by the Russian Foundation for Basic Research (Grant No. 20-52-1200320).
Received: 15.09.2020
Revised: 15.09.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 1, Pages 1–18
DOI: https://doi.org/10.1134/S0040577921010013
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. P. Isaev, A. A. Provorov, “Projectors on invariant subspaces of representations ad2 of Lie algebras so(N) and sp(2r) and Vogel parameterization”, TMF, 206:1 (2021), 3–22; Theoret. and Math. Phys., 206:1 (2021), 1–18
Citation in format AMSBIB
\Bibitem{IsaPro21}
\by A.~P.~Isaev, A.~A.~Provorov
\paper Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization
\jour TMF
\yr 2021
\vol 206
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/tmf9984}
\crossref{https://doi.org/10.4213/tmf9984}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223995}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206....1I}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 1
\pages 1--18
\crossref{https://doi.org/10.1134/S0040577921010013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262800001}
Linking options:
  • https://www.mathnet.ru/eng/tmf9984
  • https://doi.org/10.4213/tmf9984
  • https://www.mathnet.ru/eng/tmf/v206/i1/p3
  • This publication is cited in the following 9 articles:
    1. A. P. Isaev, S. O. Krivonos, “The split $5$-Casimir operator and the structure of $\wedge \mathfrak{ad}^{\otimes 5}$”, Izv. Math., 89:1 (2025), 15–25  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    2. Vladimir K. Dobrev, “Canonical Construction of Invariant Differential Operators: A Review”, Symmetry, 16:2 (2024), 151  crossref
    3. M. Avetisyan, A.P. Isaev, S.O. Krivonos, R. Mkrtchyan, “The Uniform Structure of $\mathfrak{g}^{\otimes 4}$”, Russ. J. Math. Phys., 31:3 (2024), 379  crossref
    4. Yu-tin Huang, Hynek Paul, Michele Santagata, “Non-analytic terms of string amplitudes from partial waves”, J. High Energ. Phys., 2024:11 (2024)  crossref
    5. H. Paul, M. Santagata, “Genus-one open string amplitudes on $\mathrm{AdS_5\times S^3}$ from CFT”, J. High Energ. Phys., 2023:12 (2023), 57  crossref
    6. S. M. Chester, “Bootstrapping $4d$ $\mathcal{N} = 2$ gauge theories: the case of SQCD”, J. High Energ. Phys., 2023:1 (2023), 107  crossref
    7. A. P. Isaev, A. A. Provorov, “Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters”, Theoret. and Math. Phys., 210:2 (2022), 224–260  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    8. Isaev A.P., Krivonos S.O., “Split Casimir Operator For Simple Lie Algebras, Solutions of Yang-Baxter Equations, and Vogel Parameters”, J. Math. Phys., 62:8 (2021), 083503  crossref  mathscinet  isi  scopus
    9. Alexey Isaev, Sergey Krivonos, “Split Casimir Operator and Universal Formulation of the Simple Lie Algebras”, Symmetry, 13:6 (2021), 1046  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:348
    Full-text PDF :129
    References:48
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025