Abstract:
Using the split Casimir operator, we find explicit formulas for the projectors onto invariant subspaces of the ad⊗2 representation of the algebras so(N) and sp(2r). We also consider these projectors from the standpoint of the universal description of complex simple Lie algebras using the Vogel parameterization.
The research of A. P. Isaev was supported by the Russian Foundation for Basic Research (Grant No. 19-01-00726).
The research of A. A. Provorov was supported by the Russian Foundation for Basic Research (Grant No. 20-52-12003∖20).
Citation:
A. P. Isaev, A. A. Provorov, “Projectors on invariant subspaces of representations ad⊗2 of Lie algebras so(N) and sp(2r) and Vogel parameterization”, TMF, 206:1 (2021), 3–22; Theoret. and Math. Phys., 206:1 (2021), 1–18
\Bibitem{IsaPro21}
\by A.~P.~Isaev, A.~A.~Provorov
\paper Projectors on invariant subspaces of representations $\operatorname{ad}^{\otimes2}$ of Lie algebras $so(N)$ and $sp(2r)$ and Vogel parameterization
\jour TMF
\yr 2021
\vol 206
\issue 1
\pages 3--22
\mathnet{http://mi.mathnet.ru/tmf9984}
\crossref{https://doi.org/10.4213/tmf9984}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4223995}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206....1I}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 1
\pages 1--18
\crossref{https://doi.org/10.1134/S0040577921010013}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262800001}
Linking options:
https://www.mathnet.ru/eng/tmf9984
https://doi.org/10.4213/tmf9984
https://www.mathnet.ru/eng/tmf/v206/i1/p3
This publication is cited in the following 9 articles:
A. P. Isaev, S. O. Krivonos, “The split $5$-Casimir operator and the structure of
$\wedge \mathfrak{ad}^{\otimes 5}$”, Izv. Math., 89:1 (2025), 15–25
Vladimir K. Dobrev, “Canonical Construction of Invariant Differential Operators: A Review”, Symmetry, 16:2 (2024), 151
M. Avetisyan, A.P. Isaev, S.O. Krivonos, R. Mkrtchyan, “The Uniform Structure of $\mathfrak{g}^{\otimes 4}$”, Russ. J. Math. Phys., 31:3 (2024), 379
Yu-tin Huang, Hynek Paul, Michele Santagata, “Non-analytic terms of string amplitudes from partial waves”, J. High Energ. Phys., 2024:11 (2024)
H. Paul, M. Santagata, “Genus-one open string amplitudes on $\mathrm{AdS_5\times S^3}$ from CFT”, J. High Energ. Phys., 2023:12 (2023), 57
S. M. Chester, “Bootstrapping $4d$$\mathcal{N} = 2$ gauge theories: the case of SQCD”, J. High Energ. Phys., 2023:1 (2023), 107
A. P. Isaev, A. A. Provorov, “Split Casimir operator and solutions of the Yang–Baxter equation for the $osp(M|N)$ and $s\ell(M|N)$ Lie superalgebras, higher Casimir operators, and the Vogel parameters”, Theoret. and Math. Phys., 210:2 (2022), 224–260
Isaev A.P., Krivonos S.O., “Split Casimir Operator For Simple Lie Algebras, Solutions of Yang-Baxter Equations, and Vogel Parameters”, J. Math. Phys., 62:8 (2021), 083503
Alexey Isaev, Sergey Krivonos, “Split Casimir Operator and Universal Formulation of the Simple Lie Algebras”, Symmetry, 13:6 (2021), 1046