Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 206, Number 1, Pages 23–46
DOI: https://doi.org/10.4213/tmf9968
(Mi tmf9968)
 

This article is cited in 4 scientific papers (total in 4 papers)

Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models

A. N. Liashykab, S. Z. Pakuliakcd

a Skolkovo Institute of Science and Technology, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
c Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Moscow Oblast, Russia
d Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna, Moscow Oblast, Russia
Full-text PDF (627 kB) Citations (4)
References:
Abstract: We study the class of $\mathfrak o_{2n+1}$-invariant quantum integrable models in the framework of the algebraic Bethe ansatz and propose a construction of the $\mathfrak o_{2n+1}$-invariant Bethe vector in terms of the Drinfeld currents for the Yangian double $\mathcal DY(\mathfrak o_{2n+1})$. We calculate the action of the monodromy matrix elements on the off-shell Bethe vectors for these models and obtain recurrence relations for these vectors. The action formulas can be used to investigate scalar products of Bethe vectors in $\mathfrak o_{2n+1}$-invariant models.
Keywords: algebraic Bethe ansatz, Yangian double of simple Lie algebra, Bethe vector.
Funding agency Grant number
Russian Science Foundation 19-11-00275
This research was performed at the Skolkovo Institute of Science and Technology under a grant from the Russian Science Foundation (Project No. 19-11-00275).
Received: 09.08.2020
Revised: 08.09.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 206, Issue 1, Pages 19–39
DOI: https://doi.org/10.1134/S0040577921010025
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. N. Liashyk, S. Z. Pakuliak, “Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable models”, TMF, 206:1 (2021), 23–46; Theoret. and Math. Phys., 206:1 (2021), 19–39
Citation in format AMSBIB
\Bibitem{LiaPak21}
\by A.~N.~Liashyk, S.~Z.~Pakuliak
\paper Algebraic Bethe ansatz for $\mathfrak o_{2n+1}$-invariant integrable
models
\jour TMF
\yr 2021
\vol 206
\issue 1
\pages 23--46
\mathnet{http://mi.mathnet.ru/tmf9968}
\crossref{https://doi.org/10.4213/tmf9968}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025782}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...206...19L}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 206
\issue 1
\pages 19--39
\crossref{https://doi.org/10.1134/S0040577921010025}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000664262800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf9968
  • https://doi.org/10.4213/tmf9968
  • https://www.mathnet.ru/eng/tmf/v206/i1/p23
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024