Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 1, Pages 97–121
DOI: https://doi.org/10.4213/tmf9975
(Mi tmf9975)
 

This article is cited in 7 scientific papers (total in 7 papers)

The law of large numbers for quantum stochastic filtering and control of many-particle systems

V. N. Kolokoltsovabc

a Department of Statistics, University of Warwick, Coventry, UK
b National Research University "Higher School of Economics", Moscow, Russia
c Petrozavodsk State University, Petrozavodsk, Russia
Full-text PDF (523 kB) Citations (7)
References:
Abstract: There is an extensive literature on the dynamic law of large numbers for systems of quantum particles, that is, on the derivation of an equation describing the limiting individual behavior of particles in a large ensemble of identical interacting particles. The resulting equations are generally referred to as nonlinear Schrödinger equations or Hartree equations, or Gross–Pitaevskii equations. In this paper, we extend some of these convergence results to a stochastic framework. Specifically, we work with the Belavkin stochastic filtering of many-particle quantum systems. The resulting limiting equation is an equation of a new type, which can be regarded as a complex-valued infinite-dimensional nonlinear diffusion of McKean–Vlasov type. This result is the key ingredient for the theory of quantum mean-field games developed by the author in a previous paper.
Keywords: quantum dynamic law of large numbers, quantum filtering, homodyne detection, Belavkin equation, nonlinear stochastic Schrödinger equation, quantum interacting particles, quantum control, quantum mean-field games, infinite-dimensional McKean–Vlasov diffusion on manifold.
Funding agency Grant number
National Research University Higher School of Economics
The study prepared within the framework of the HSE University Basic Research Program.
Received: 26.08.2020
Revised: 25.12.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 1, Pages 937–957
DOI: https://doi.org/10.1134/S0040577921070084
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Kolokoltsov, “The law of large numbers for quantum stochastic filtering and control of many-particle systems”, TMF, 208:1 (2021), 97–121; Theoret. and Math. Phys., 208:1 (2021), 937–957
Citation in format AMSBIB
\Bibitem{Kol21}
\by V.~N.~Kolokoltsov
\paper The~law of large numbers for quantum stochastic filtering and control of many-particle systems
\jour TMF
\yr 2021
\vol 208
\issue 1
\pages 97--121
\mathnet{http://mi.mathnet.ru/tmf9975}
\crossref{https://doi.org/10.4213/tmf9975}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208..937K}
\elib{https://elibrary.ru/item.asp?id=46928590}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 1
\pages 937--957
\crossref{https://doi.org/10.1134/S0040577921070084}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000673296600008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110542298}
Linking options:
  • https://www.mathnet.ru/eng/tmf9975
  • https://doi.org/10.4213/tmf9975
  • https://www.mathnet.ru/eng/tmf/v208/i1/p97
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:576
    Full-text PDF :79
    References:25
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024