Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2021, Volume 208, Number 1, Pages 85–96
DOI: https://doi.org/10.4213/tmf10024
(Mi tmf10024)
 

Increase in entropy and time irreversibility in Hamiltonian dynamics

V. P. Pavlova, V. M. Sergeevb, R. V. Shaminc

a Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
b Center for Global Issues, MGIMO
c MIREA — Russian Technological University, Moscow, Russia
References:
Abstract: We construct a Hamiltonian field theory model that combines hydrodynamics and thermodynamics. In this model, the continuity equation and the Euler equation for a potential flow are used as the Hamilton equations; and equations of state (or the Gibbs equations, which are equivalent to them), as equations of second-class constraints. The Hamiltonian function density reduced to the surface of second-class constraints is the sum of densities of the kinetic and potential energies; free energy then plays the role of potential energy. The surface of second-class constraints is endowed with a natural symplectic structure. Canonical variables are also defined on the second-class constraint surface such that all physical variables can be expressed as functions of these variables. In particular, from the standpoint of the Hamiltonian formalism, entropy is interpreted as a generalized velocity – a Lagrange multiplier for the corresponding second-class constraint expressing the temperature as a function of the canonical variables at the last reduction stage. This multiplier is expressed in terms of the canonical variables at the last stage, yielding a nontrivial equation of motion for entropy. The model must be made more concrete by fixing the dependence of the specific free energy on its arguments. We choose the simplest nontrivial variant, the monatomic van der Waals gas whose atoms are in the ground state. The canonical Hamilton equations allow calculating the rate of change in the entropy of this dynamic system. For the physically interesting case where the system evolution leads to equilibrium, the entropy and its rate of change are functionals of the solution of dynamic equations for the density. A numerical solution of these equations gives a monotonic growth of the entropy (for a finite evolution time). The equation can be linearized to find the time asymptotics; an elliptic equation with the “wrong” sign of the analogue of the squared speed of sound, rather than a hyperbolic equation, is obtained for the asymptotic evolution of the density deviation from the equilibrium value. Thus, the time reversibility of the solution is lost.
Keywords: Hamiltonian dynamics, closed Hamiltonian system, entropy growth, time irreversibility.
Received: 08.12.2020
Revised: 17.12.2020
English version:
Theoretical and Mathematical Physics, 2021, Volume 208, Issue 1, Pages 926–936
DOI: https://doi.org/10.1134/S0040577921070072
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. P. Pavlov, V. M. Sergeev, R. V. Shamin, “Increase in entropy and time irreversibility in Hamiltonian dynamics”, TMF, 208:1 (2021), 85–96; Theoret. and Math. Phys., 208:1 (2021), 926–936
Citation in format AMSBIB
\Bibitem{PavSerSha21}
\by V.~P.~Pavlov, V.~M.~Sergeev, R.~V.~Shamin
\paper Increase in entropy and time irreversibility in Hamiltonian dynamics
\jour TMF
\yr 2021
\vol 208
\issue 1
\pages 85--96
\mathnet{http://mi.mathnet.ru/tmf10024}
\crossref{https://doi.org/10.4213/tmf10024}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4286434}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2021TMP...208..926P}
\elib{https://elibrary.ru/item.asp?id=46910794}
\transl
\jour Theoret. and Math. Phys.
\yr 2021
\vol 208
\issue 1
\pages 926--936
\crossref{https://doi.org/10.1134/S0040577921070072}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000673296600007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85110453920}
Linking options:
  • https://www.mathnet.ru/eng/tmf10024
  • https://doi.org/10.4213/tmf10024
  • https://www.mathnet.ru/eng/tmf/v208/i1/p85
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:313
    Full-text PDF :93
    References:49
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024