Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 204, Number 3, Pages 332–354
DOI: https://doi.org/10.4213/tmf9904
(Mi tmf9904)
 

This article is cited in 5 scientific papers (total in 5 papers)

Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$

V. S. Gerdjikovabc, A. A. Stefanovad, I. D. Ilieva, G. P. Boyadjieva, A. O. Smirnove, V. B. Matveevfg, M. V. Pavlovh

a Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Sofia, Bulgaria
b National Engineering Physics Institute "MEPhI", Moscow, Russia
c Institute for Advanced Physical Studies, New Bulgarian University, Sofia, Bulgaria
d Faculty of Mathematics and Informatics, Sofia University "St. Kliment Ohridski", Sofia, Bulgaria
e St. Petersburg State University of Aerospace Instrumentation, St. Petersburg, Russia
f St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, St. Petersburg, Russia
g Institut de Mathématiques de Bourgogne (IMB), Université de Bourgogne — France Comté, Dijon, France
h Lebedev Physical Institute of the Russian Academy of Sciences, Moscow, Russia
Full-text PDF (602 kB) Citations (5)
References:
Abstract: We construct three nonequivalent gradings in the algebra $D_4\simeq so(8)$. The first is the standard grading obtained with the Coxeter automorphism $C_1=S_{\alpha_2}S_{\alpha_1}S_{\alpha_3}S_{\alpha_4}$ using its dihedral realization. In the second, we use $C_2=C_1R$, where $R$ is the mirror automorphism. The third is $C_3=S_{\alpha_2}S_{\alpha_1}T$, where $T$ is the external automorphism of order 3. For each of these gradings, we construct a basis in the corresponding linear subspaces $\mathfrak{g}^{(k)}$, the orbits of the Coxeter automorphisms, and the related Lax pairs generating the corresponding modified Korteweg–de Vries (mKdV) hierarchies. We find compact expressions for each of the hierarchies in terms of recursion operators. Finally, we write the first nontrivial mKdV equations and their Hamiltonians in explicit form. For $D_4^{(1)}$, these are in fact two mKdV systems because the exponent 3 has the multiplicity two in this case. Each of these mKdV systems consists of four equations of third order in $\partial_x$. For $D_4^{(2)}$, we have a system of three equations of third order in $\partial_x$. For $D_4^{(3)}$, we have a system of two equations of fifth order in $\partial_x$.
Keywords: mKdV equation, recursion operator, Kac–Moody algebra, hierarchy of integrable equations.
Funding agency Grant number
Bulgarian National Science Fund NTS-Russia 02/101
Russian Foundation for Basic Research 18-51-18007
This research was supported by the Bulgarian Science Foundation (Grant No. NTS-Russia 02/101 from 23 October 2017) and the Russian Foundation for Basic Research (Grant No. 18-51-18007).
Received: 10.03.2020
Revised: 10.03.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 204, Issue 3, Pages 1110–1129
DOI: https://doi.org/10.1134/S0040577920090020
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. S. Gerdjikov, A. A. Stefanov, I. D. Iliev, G. P. Boyadjiev, A. O. Smirnov, V. B. Matveev, M. V. Pavlov, “Recursion operators and hierarchies of $\text{mKdV}$ equations related to the Kac–Moody algebras $D_4^{(1)}$, $D_4^{(2)}$, and $D_4^{(3)}$”, TMF, 204:3 (2020), 332–354; Theoret. and Math. Phys., 204:3 (2020), 1110–1129
Citation in format AMSBIB
\Bibitem{GerSteIli20}
\by V.~S.~Gerdjikov, A.~A.~Stefanov, I.~D.~Iliev, G.~P.~Boyadjiev, A.~O.~Smirnov, V.~B.~Matveev, M.~V.~Pavlov
\paper Recursion operators and hierarchies of $\text{mKdV}$ equations related to the~Kac--Moody algebras $D_4^{(1)}$\!, $D_4^{(2)}$\!, and $D_4^{(3)}$
\jour TMF
\yr 2020
\vol 204
\issue 3
\pages 332--354
\mathnet{http://mi.mathnet.ru/tmf9904}
\crossref{https://doi.org/10.4213/tmf9904}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153744}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204.1110G}
\elib{https://elibrary.ru/item.asp?id=45309884}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 3
\pages 1110--1129
\crossref{https://doi.org/10.1134/S0040577920090020}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000572663400002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091484570}
Linking options:
  • https://www.mathnet.ru/eng/tmf9904
  • https://doi.org/10.4213/tmf9904
  • https://www.mathnet.ru/eng/tmf/v204/i3/p332
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:362
    Full-text PDF :93
    References:51
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024