Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 204, Number 3, Pages 355–366
DOI: https://doi.org/10.4213/tmf9862
(Mi tmf9862)
 

This article is cited in 2 scientific papers (total in 2 papers)

Centers of generalized reflection equation algebras

D. I. Gurevichab, P. A. Saponovcd

a Université Polytechnique Hauts-de-France, Valenciennes, France
b Poncelet Interdisciplinary Scientific Center, Moscow, Russia
c National Research University "Higher School of Economics", Moscow, Russia
d Institute for High Energy Physics, Russian Research Center "Kurchatov Institute", Protvino, Moscow Oblast, Russia
Full-text PDF (489 kB) Citations (2)
References:
Abstract: As is known, in the reflection equation (RE) algebra associated with an involutive or Hecke $R$-matrix, the elements $\operatorname{Tr}_RL^k$ (called quantum power sums) are central. Here, $L$ is the generating matrix of this algebra, and $\operatorname{Tr}_R$ is the operation of taking the $R$-trace associated with a given $R$-matrix. We consider the problem of whether this is true in certain RE-like algebras depending on a spectral parameter. We mainly study algebras similar to those introduced by Reshetikhin and Semenov-Tian-Shansky (we call them algebras of RS type). These algebras are defined using some current $R$-matrices (i.e., depending on parameters) arising from involutive and Hecke $R$-matrices by so-called Baxterization. In algebras of RS type. we define quantum power sums and show that the lowest quantum power sum is central iff the value of the “charge” $c$ in its definition takes a critical value. This critical value depends on the bi-rank $(m|n)$ of the initial $R$-matrix. Moreover, if the bi-rank is equal to $(m|m)$ and the charge $c$ has a critical value, then all quantum power sums are central.
Keywords: reflection equation algebra, algebra of Reshetikhin–Semenov-Tian-Shansky type, charge, quantum powers of the generating matrix, quantum power sum.
Funding agency Grant number
Russian Foundation for Basic Research 19-01-00726
The research of P. A. Saponov was supported in part by the Russian Foundation for Basic Research (Grant No. 19-01-00726).
Received: 21.12.2019
Revised: 24.03.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 204, Issue 3, Pages 1130–1139
DOI: https://doi.org/10.1134/S0040577920090032
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. I. Gurevich, P. A. Saponov, “Centers of generalized reflection equation algebras”, TMF, 204:3 (2020), 355–366; Theoret. and Math. Phys., 204:3 (2020), 1130–1139
Citation in format AMSBIB
\Bibitem{GurSap20}
\by D.~I.~Gurevich, P.~A.~Saponov
\paper Centers of generalized reflection equation algebras
\jour TMF
\yr 2020
\vol 204
\issue 3
\pages 355--366
\mathnet{http://mi.mathnet.ru/tmf9862}
\crossref{https://doi.org/10.4213/tmf9862}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4153745}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204.1130G}
\elib{https://elibrary.ru/item.asp?id=45269496}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 3
\pages 1130--1139
\crossref{https://doi.org/10.1134/S0040577920090032}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000572663400003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85091414631}
Linking options:
  • https://www.mathnet.ru/eng/tmf9862
  • https://doi.org/10.4213/tmf9862
  • https://www.mathnet.ru/eng/tmf/v204/i3/p355
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:217
    Full-text PDF :72
    References:31
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024