Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 204, Number 2, Pages 242–257
DOI: https://doi.org/10.4213/tmf9895
(Mi tmf9895)
 

This article is cited in 4 scientific papers (total in 4 papers)

Quantifying non-Gaussianity via the Hellinger distance

Yue Zhangab, Shunlong Luoab

a Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China
b School of Mathematical Sciences, University of the Chinese Academy of Sciences, Beijing, China
Full-text PDF (478 kB) Citations (4)
References:
Abstract: Non-Gaussianity is an important resource for quantum information processing with continuous variables. We introduce a measure of the non-Gaussianity of bosonic field states based on the Hellinger distance and present its basic features. This measure has some natural properties and is easy to compute. We illustrate this measure with typical examples of bosonic field states and compare it with various measures of non-Gaussianity. In particular, we highlight its similarity to and difference from the measure based on the Bures distance (or, equivalently, fidelity).
Keywords: bosonic field, Gaussian state, non-Gaussianity, Hellinger distance, Bures distance.
Funding agency Grant number
National Natural Science Foundation of China 11875317
National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences Y029152K51
2008DP173182
This research was supported by the National Natural Science Foundation of China (Grant No. 11875317), the National Center for Mathematics and Interdisciplinary Sciences, Chinese Academy of Sciences (Grant No. Y029152K51), and the Key Laboratory of Random Complex Structures and Data Science, Chinese Academy of Sciences (Grant No. 2008DP173182).
Received: 02.03.2020
Revised: 19.03.2020
English version:
Theoretical and Mathematical Physics, 2020, Volume 204, Issue 2, Pages 1046–1058
DOI: https://doi.org/10.1134/S0040577920080061
Bibliographic databases:
Document Type: Article
PACS: 03.65.Ta, 03.67.-a, 42.50.Dv
Language: Russian
Citation: Yue Zhang, Shunlong Luo, “Quantifying non-Gaussianity via the Hellinger distance”, TMF, 204:2 (2020), 242–257; Theoret. and Math. Phys., 204:2 (2020), 1046–1058
Citation in format AMSBIB
\Bibitem{ZhaLuo20}
\by Yue~Zhang, Shunlong~Luo
\paper Quantifying non-Gaussianity via the~Hellinger distance
\jour TMF
\yr 2020
\vol 204
\issue 2
\pages 242--257
\mathnet{http://mi.mathnet.ru/tmf9895}
\crossref{https://doi.org/10.4213/tmf9895}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204.1046Z}
\elib{https://elibrary.ru/item.asp?id=45407610}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 2
\pages 1046--1058
\crossref{https://doi.org/10.1134/S0040577920080061}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564930100006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089740542}
Linking options:
  • https://www.mathnet.ru/eng/tmf9895
  • https://doi.org/10.4213/tmf9895
  • https://www.mathnet.ru/eng/tmf/v204/i2/p242
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:233
    Full-text PDF :76
    References:39
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024