Abstract:
We study a "hard-core" model on a Cayley tree. In the case of a normal divisor of index 4, we show the uniqueness of weakly periodic Gibbs measures under certain conditions on the parameters. Moreover, we prove that there exist weakly periodic (nonperiodic) Gibbs measures different from those previously known.
Citation:
R. M. Khakimov, M. T. Makhammadaliev, “Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model”, TMF, 204:2 (2020), 258–279; Theoret. and Math. Phys., 204:2 (2020), 1059–1078
\Bibitem{KhaMak20}
\by R.~M.~Khakimov, M.~T.~Makhammadaliev
\paper Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model
\jour TMF
\yr 2020
\vol 204
\issue 2
\pages 258--279
\mathnet{http://mi.mathnet.ru/tmf9818}
\crossref{https://doi.org/10.4213/tmf9818}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...204.1059K}
\elib{https://elibrary.ru/item.asp?id=45393828}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 204
\issue 2
\pages 1059--1078
\crossref{https://doi.org/10.1134/S0040577920080073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000564930100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85089740100}
Linking options:
https://www.mathnet.ru/eng/tmf9818
https://doi.org/10.4213/tmf9818
https://www.mathnet.ru/eng/tmf/v204/i2/p258
This publication is cited in the following 8 articles:
U. A. Rozikov, R. M. Khakimov, M. T. Makhammadaliev, “Gibbs measures for a Hard-Core model with a countable set of states”, Rev. Math. Phys., 37:04 (2025)
Muhtorjon Makhammadaliev, “Weakly periodic gibbs measures for the HC model with a countable set of spin values”, Reports on Mathematical Physics, 94:1 (2024), 83
R. M. Khakimov, M. T. Makhammadaliev, “Translation-Invariant Gibbs Measures for the Hard Core Model with a Countable Set of Spin Values”, Lobachevskii J Math, 45:8 (2024), 3897
R. M. Khakimov, M. T. Makhammadaliev, F. H. Haydarov, “New class of Gibbs measures for two-state hard-core model on a Cayley tree”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 26:04 (2023), 2350024
R. M. Khakimov, M. T. Makhammadaliev, U. A. Rozikov, “Gibbs measures for HC-model with a countable set of spin values on a Cayley tree”, Math. Phys. Anal. Geom., 26:2 (2023), 9
U. A. Rozikov, F. H. Haydarov, “A HC model with countable set of spin values: Uncountable set of Gibbs measures”, Rev. Math. Phys., 35:01 (2023), 2250039
N. N. Ganikhodzhaev, U. A. Rozikov, N. M. Khatamov, “Gibbs measures for the HC Blume–Capel model with countably many states on a Cayley tree”, Theoret. and Math. Phys., 211:3 (2022), 856–865
R. M. Khakimov, M. T. Makhammadaliev, “Nonprobability Gibbs measures for the HC model with a countable set of spin values for a “wand”-type graph on a Cayley tree”, Theoret. and Math. Phys., 212:3 (2022), 1259–1275