Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 2, Pages 290–303
DOI: https://doi.org/10.4213/tmf9816
(Mi tmf9816)
 

This article is cited in 3 scientific papers (total in 3 papers)

Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities

S. B. Leble, V. V. Rodionova

Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Full-text PDF (401 kB) Citations (3)
References:
Abstract: We study the dynamics of a domain wall ($DW$) in the magnetic core of thin amorphous glass-coated bistable microwires with a circular cross section containing longitudinal inhomogeneities. We use a systematic analytic approach to the problem of finding particular solutions of the continuous Heisenberg model for which we use Landau–Lifshitz–Gilbert equations. We establish a relation between the structure of a material including defects and the DW mobility that explains some experimental data. For a given defect distribution in the longitudinal direction, we study the influence of defects on DW propagation in bistable glass-coated microwires. We obtain new key formulas for the DW velocity and acceleration based on taking the average defect distribution into account.
Keywords: Landau–Lifshitz–Gilbert equation, amorphous microwire, magnetic domain walls, anisotropy coefficient, magnetic inhomogeneity.
Funding agency Grant number
Russian Science Foundation 17-12-01569
Ministry of Education and Science of the Russian Federation 5-100
This research was supported by a grant from the Russian Science Foundation (Project No. 17-12-01569).
The academic travel of V. V. Rodionova to discuss the results was supported by a grant to Immanuel Kant Baltic Federal University under Project "5-100" of the Russian Ministry of Science and Higher Education.
Received: 05.09.2019
Revised: 05.09.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 2, Pages 252–264
DOI: https://doi.org/10.1134/S0040577920020087
Bibliographic databases:
Document Type: Article
PACS: 75.78.Fg, 75.60.Ch, 75.50.Kj
MSC: 35Q51
Language: Russian
Citation: S. B. Leble, V. V. Rodionova, “Dynamics of domain walls in a cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities”, TMF, 202:2 (2020), 290–303; Theoret. and Math. Phys., 202:2 (2020), 252–264
Citation in format AMSBIB
\Bibitem{LebRod20}
\by S.~B.~Leble, V.~V.~Rodionova
\paper Dynamics of domain walls in a~cylindrical amorphous ferromagnetic microwire with magnetic inhomogeneities
\jour TMF
\yr 2020
\vol 202
\issue 2
\pages 290--303
\mathnet{http://mi.mathnet.ru/tmf9816}
\crossref{https://doi.org/10.4213/tmf9816}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070081}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..252L}
\elib{https://elibrary.ru/item.asp?id=43258773}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 2
\pages 252--264
\crossref{https://doi.org/10.1134/S0040577920020087}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520959900008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082069731}
Linking options:
  • https://www.mathnet.ru/eng/tmf9816
  • https://doi.org/10.4213/tmf9816
  • https://www.mathnet.ru/eng/tmf/v202/i2/p290
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:273
    Full-text PDF :62
    References:28
    First page:13
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024