Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 202, Number 2, Pages 304–311
DOI: https://doi.org/10.4213/tmf9751
(Mi tmf9751)
 

This article is cited in 2 scientific papers (total in 2 papers)

Ising model with nonmagnetic dilution on recursive lattices

S. V. Semkin, V. P. Smagin, E. G. Gusev

Vladivostok State University of Economics and Service, Vladivistok, Russia
Full-text PDF (332 kB) Citations (2)
References:
Abstract: Using a method for composing self-consistent equations, we construct a class of approximate solutions of the Ising problem that are a generalization of the Bethe approximation. We show that some of the approximations in this class can be interpreted as exact solutions of the Ising model on recursive lattices. For these recursive lattices, we find exact values of the thresholds of percolation through sites and couplings and show that for the Ising model of a diluted magnet, our method leads to exact values for these thresholds.
Keywords: Ising model, crystal lattice, magnet with nonmagnetic dilution, recursive lattice.
Received: 22.05.2019
Revised: 10.07.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 202, Issue 2, Pages 265–271
DOI: https://doi.org/10.1134/S0040577920020099
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. V. Semkin, V. P. Smagin, E. G. Gusev, “Ising model with nonmagnetic dilution on recursive lattices”, TMF, 202:2 (2020), 304–311; Theoret. and Math. Phys., 202:2 (2020), 265–271
Citation in format AMSBIB
\Bibitem{SemSmaGus20}
\by S.~V.~Semkin, V.~P.~Smagin, E.~G.~Gusev
\paper Ising model with nonmagnetic dilution on recursive lattices
\jour TMF
\yr 2020
\vol 202
\issue 2
\pages 304--311
\mathnet{http://mi.mathnet.ru/tmf9751}
\crossref{https://doi.org/10.4213/tmf9751}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4070082}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...202..265S}
\elib{https://elibrary.ru/item.asp?id=43273739}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 202
\issue 2
\pages 265--271
\crossref{https://doi.org/10.1134/S0040577920020099}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000520959900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85082038489}
Linking options:
  • https://www.mathnet.ru/eng/tmf9751
  • https://doi.org/10.4213/tmf9751
  • https://www.mathnet.ru/eng/tmf/v202/i2/p304
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:221
    Full-text PDF :49
    References:29
    First page:4
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024