Abstract:
It is shown that quantum dynamics is equivalent to a stochastic process in phase space. The process is described by normalized but not necessarily positive probability distributions (“pseudoprobabilities”). The dynamics of the distribution function of current process values literally coincides with that of the Wigner function of quantum system.
Citation:
P. L. Rubin, “Quantum dynamics as stochastic process in phase space”, TMF, 110:3 (1997), 454–458; Theoret. and Math. Phys., 110:3 (1997), 360–363
\Bibitem{Rub97}
\by P.~L.~Rubin
\paper Quantum dynamics as stochastic process in phase space
\jour TMF
\yr 1997
\vol 110
\issue 3
\pages 454--458
\mathnet{http://mi.mathnet.ru/tmf981}
\crossref{https://doi.org/10.4213/tmf981}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471190}
\zmath{https://zbmath.org/?q=an:0913.46064}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 3
\pages 360--363
\crossref{https://doi.org/10.1007/BF02630461}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XU74600009}
Linking options:
https://www.mathnet.ru/eng/tmf981
https://doi.org/10.4213/tmf981
https://www.mathnet.ru/eng/tmf/v110/i3/p454
This publication is cited in the following 3 articles:
Oliveira, AC, “Tunnel effect as a hidden variable theory test”, Physica A-Statistical Mechanics and Its Applications, 388:8 (2009), 1413
Skorobogatov, GA, “Deduction of the Klein-Fock-Gordon equation from a non-Markovian stochastic equation for real pure-jump process”, International Journal of Quantum Chemistry, 88:5 (2002), 614
Skorobogatov, GA, “Quantum mechanics can be formulated as a non-Markovian stochastic process”, Physical Review A, 58:5 (1998), 3426