Abstract:
We consider small perturbations of the potential periodic in variables xjxj, j=1,2,3, by a function wich is periodic in x1, x2 and exponentially decreases as |x3|→∞. We prove that close to energies corresponding to the extrema in the third component of the quasy-momentum of nondegenerate eigenvalues of the Schrödinger operator with periodic potential considered in the cell there exists a unique (up to multiplicative factor) solution of the integral equation describing both eigenvalues and resonance levels. The asymptotic behaviour of the latter quantities is described.
Citation:
Yu. P. Chuburin, “On small perturbations of the Schrödinger equation with periodic potential”, TMF, 110:3 (1997), 443–453; Theoret. and Math. Phys., 110:3 (1997), 351–359
\Bibitem{Chu97}
\by Yu.~P.~Chuburin
\paper On small perturbations of the Schr\"odinger equation with periodic potential
\jour TMF
\yr 1997
\vol 110
\issue 3
\pages 443--453
\mathnet{http://mi.mathnet.ru/tmf980}
\crossref{https://doi.org/10.4213/tmf980}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1471189}
\zmath{https://zbmath.org/?q=an:0913.47013}
\transl
\jour Theoret. and Math. Phys.
\yr 1997
\vol 110
\issue 3
\pages 351--359
\crossref{https://doi.org/10.1007/BF02630460}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1997XU74600008}
Linking options:
https://www.mathnet.ru/eng/tmf980
https://doi.org/10.4213/tmf980
https://www.mathnet.ru/eng/tmf/v110/i3/p443
This publication is cited in the following 20 articles:
Yu. P. Chuburin, T. S. Tinyukova, “Behaviour of Andreev states for topological phase transition”, Theoret. and Math. Phys., 208:1 (2021), 977–992
Yu. P. Chuburin, T. S. Tinyukova, “Mutual transition of Andreev and Majorana bound states in a superconducting gap”, Theoret. and Math. Phys., 205:3 (2020), 1666–1681
T. S. Tinyukova, Yu. P. Chuburin, “Issledovanie sobstvennykh znachenii i rasseyaniya dlya gamiltoniana Bogolyubova–de Zhena vblizi granitsy sverkhprovodyaschei scheli”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 30:2 (2020), 259–269
Chuburin Yu.P., Tinyukova T.S., “The Emergence of Bound States in a Superconducting Gap At the Topological Insulator Edge”, Phys. Lett. A, 384:27 (2020), 126694
Yu. P. Chuburin, “Two-particle scattering in a periodic medium”, Theoret. and Math. Phys., 191:2 (2017), 738–751
T. S. Tinyukova, Yu. P. Chuburin, “Electron scattering by a crystal layer”, Theoret. and Math. Phys., 176:3 (2013), 1207–1219
T. S. Tinyukova, “Issledovanie raznostnogo uravneniya Shredingera dlya nekotorykh fizicheskikh modelei”, Izv. IMI UdGU, 2013, no. 2(42), 3–57
Yu. P. Chuburin, “Quasilevels of a two-particle Schrödinger operator with a perturbed periodic potential”, Theoret. and Math. Phys., 158:1 (2009), 96–104
Baranova, LY, “Quasi-levels of the two-particle discrete Schrodinger operator with a perturbed periodic potential”, Journal of Physics A-Mathematical and Theoretical, 41:43 (2008), 435205
L. E. Baranova, Yu. P. Chuburin, “Kvaziurovni dvukhchastichnogo diskretnogo operatora Shredingera s malym potentsialom”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 2008, no. 1, 35–46
Yu. P. Chuburin, “Decay law for a quasistationary state of the Schrödinger operator for a crystal film”, Theoret. and Math. Phys., 151:2 (2007), 648–658
Yu. P. Chuburin, “Perturbation Theory of Resonances and Embedded Eigenvalues of the Schrodinger Operator For a Crystal Film”, Theoret. and Math. Phys., 143:3 (2005), 836–847
Wolf, GV, “Specific features of low-energy electron scattering by thin films of cubic crystals”, Physics of the Solid State, 47:6 (2005), 1048
Chuburin, YP, “On levels of a weakly perturbed periodic Schrodinger operator”, Communications in Mathematical Physics, 249:3 (2004), 497
L. E. Morozova, Yu. P. Chuburin, “Ob urovnyakh odnomernogo diskretnogo operatora Shredingera s ubyvayuschim potentsialom”, Izv. IMI UdGU, 2004, no. 1(29), 85–94
N. I. Pletnikova, “Ob odnomernom uravnenii Shredingera s nelokalnym potentsialom tipa vozmuschennoi stupenki”, Izv. IMI UdGU, 2004, no. 1(29), 95–108
Yu. P. Chuburin, “Schrödinger operator eigenvalue (resonance) on a zone boundary”, Theoret. and Math. Phys., 126:2 (2001), 161–168
Yu. P. Chuburin, “Schrödinger operator with a perturbed small steplike potential”, Theoret. and Math. Phys., 120:2 (1999), 1045–1057
Yu. P. Chuburin, “Resonance multiplicity of a perturbed periodic Schrödinger operator”, Theoret. and Math. Phys., 116:1 (1998), 846–855
Vol'f, GV, “Resonance states of the continuous spectrum of a bounded crystal near the critical points of volume bands”, Physics of the Solid State, 40:11 (1998), 1813