Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 1, Pages 161–173
DOI: https://doi.org/10.4213/tmf9786
(Mi tmf9786)
 

This article is cited in 16 scientific papers (total in 16 papers)

A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras

I. T. Habibullinab, M. N. Kuznetsovaa

a Institute of Mathematics with Computing Centre — Subdivision of the Ufa Federal Research Centre of the~Russian Academy of Science, Ufa, Russia
b Bashkir State University, Ufa, Russia
References:
Abstract: We study the problem of the integrable classification of nonlinear lattices depending on one discrete and two continuous variables. By integrability, we mean the presence of reductions of a chain to a system of hyperbolic equations of an arbitrarily high order that are integrable in the Darboux sense. Darboux integrability admits a remarkable algebraic interpretation: the Lie–Rinehart algebras related to both characteristic directions corresponding to the reduced system of hyperbolic equations must have a finite dimension. We discuss a classification algorithm based on the properties of the characteristic algebra and present some classification results. We find new examples of integrable equations.
Keywords: two-dimensional integrable lattice, $x$-integral, integrable reduction, cutoff condition, open lattice, Darboux-integrable system, characteristic Lie algebra.
Received: 29.07.2019
Revised: 22.10.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 1, Pages 569–581
DOI: https://doi.org/10.1134/S0040577920040121
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, TMF, 203:1 (2020), 161–173; Theoret. and Math. Phys., 203:1 (2020), 569–581
Citation in format AMSBIB
\Bibitem{HabKuz20}
\by I.~T.~Habibullin, M.~N.~Kuznetsova
\paper A~classification algorithm for integrable two-dimensional lattices
via Lie--Rinehart algebras
\jour TMF
\yr 2020
\vol 203
\issue 1
\pages 161--173
\mathnet{http://mi.mathnet.ru/tmf9786}
\crossref{https://doi.org/10.4213/tmf9786}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4082005}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..569H}
\elib{https://elibrary.ru/item.asp?id=43279185}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 1
\pages 569--581
\crossref{https://doi.org/10.1134/S0040577920040121}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529685500012}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084123541}
Linking options:
  • https://www.mathnet.ru/eng/tmf9786
  • https://doi.org/10.4213/tmf9786
  • https://www.mathnet.ru/eng/tmf/v203/i1/p161
  • This publication is cited in the following 16 articles:
    1. I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854  crossref
    2. A. R. Khakimova, “Darboux-integrable Reductions of the Hirota–Miwa Type Discrete Equations”, Lobachevskii J Math, 45:6 (2024), 2717  crossref
    3. Ismagil T. Habibullin, Aigul R. Khakimova, “Higher Symmetries of Lattices in 3D”, Regul. Chaotic Dyn., 29:6 (2024), 853–865  mathnet  crossref
    4. Ufa Math. J., 16:4 (2024), 124–135  mathnet  crossref
    5. M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690  mathnet  crossref  crossref  mathscinet  adsnasa
    6. M. N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theoret. and Math. Phys., 216:2 (2023), 1158–1167  mathnet  crossref  crossref  mathscinet  adsnasa
    7. I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573  mathnet  crossref  crossref  mathscinet  adsnasa
    8. S. V. Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
    9. I. T. Habibullin, A. R. Khakimova, “Integrals and characteristic algebras for systems of discrete equations on a quadrilateral graph”, Theoret. and Math. Phys., 213:2 (2022), 1589–1612  mathnet  crossref  crossref  mathscinet  adsnasa
    10. I. T. Habibullin, A. R. Khakimova, “Algebraic reductions of discrete equations of Hirota-Miwa type”, Ufa Math. J., 14:4 (2022), 113–126  mathnet  crossref  mathscinet
    11. D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69  mathnet  crossref  isi
    12. Maria N. Kuznetsova, “Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021), 088, 13 pp.  mathnet  crossref
    13. I. T. Habibullin, M. N. Kuznetsova, “An algebraic criterion of the Darboux integrability of differential-difference equations and systems”, J. Phys. A-Math. Theor., 54:50 (2021), 505201  crossref  mathscinet  isi
    14. I. T. Habibullin, A. R. Khakimova, “Characteristic Lie algebras of integrable differential-difference equations in 3D”, J. Phys. A-Math. Theor., 54:29 (2021), 295202  crossref  mathscinet  isi
    15. Habibullin I.T. Kuznetsova M.N. Sakieva A.U., “Integrability Conditions For Two-Dimensional Toda-Like Equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203  crossref  mathscinet  isi
    16. Ferapontov E.V. Habibullin I.T. Kuznetsova M.N. Novikov V.S., “On a Class of 2D Integrable Lattice Equations”, J. Math. Phys., 61:7 (2020), 073505  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:480
    Full-text PDF :101
    References:85
    First page:10
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025