Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2020, Volume 203, Number 1, Pages 151–160
DOI: https://doi.org/10.4213/tmf9793
(Mi tmf9793)
 

Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations

A. G. Sergeev

Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: We present the concept of an adiabatic limit of Ginzburg–Landau dynamical equations on $\mathbb{R}^{1+2}$ and Seiberg–Witten equations on four-dimensional symplectic manifolds. We show that the Seiberg–Witten equations can be regarded as a complex version of the Ginzburg–Landau equations.
Keywords: adiabatic limit, Ginzburg–Landau equation, Seiberg–Witten equation, Abelian Higgs model, pseudoholomorphic curve.
Funding agency Grant number
Russian Science Foundation
This research was supported by the Russian Foundation for Basic Research (Grant No. 19-11-00316).
Received: 19.08.2019
Revised: 19.08.2019
English version:
Theoretical and Mathematical Physics, 2020, Volume 203, Issue 1, Pages 561–568
DOI: https://doi.org/10.1134/S004057792004011X
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, TMF, 203:1 (2020), 151–160; Theoret. and Math. Phys., 203:1 (2020), 561–568
Citation in format AMSBIB
\Bibitem{Ser20}
\by A.~G.~Sergeev
\paper Adiabatic limit in Ginzburg--Landau and Seiberg--Witten equations
\jour TMF
\yr 2020
\vol 203
\issue 1
\pages 151--160
\mathnet{http://mi.mathnet.ru/tmf9793}
\crossref{https://doi.org/10.4213/tmf9793}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4082004}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2020TMP...203..561S}
\elib{https://elibrary.ru/item.asp?id=43303569}
\transl
\jour Theoret. and Math. Phys.
\yr 2020
\vol 203
\issue 1
\pages 561--568
\crossref{https://doi.org/10.1134/S004057792004011X}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000529685500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85084001264}
Linking options:
  • https://www.mathnet.ru/eng/tmf9793
  • https://doi.org/10.4213/tmf9793
  • https://www.mathnet.ru/eng/tmf/v203/i1/p151
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :43
    References:56
    First page:15
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024