|
Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations
A. G. Sergeev Steklov Mathematical Institute of Russian Academy of
Sciences, Moscow, Russia
Abstract:
We present the concept of an adiabatic limit of Ginzburg–Landau dynamical equations on $\mathbb{R}^{1+2}$ and Seiberg–Witten equations on four-dimensional symplectic manifolds. We show that the Seiberg–Witten equations can be regarded as a complex version of the Ginzburg–Landau equations.
Keywords:
adiabatic limit, Ginzburg–Landau equation, Seiberg–Witten equation,
Abelian Higgs model, pseudoholomorphic curve.
Received: 19.08.2019 Revised: 19.08.2019
Citation:
A. G. Sergeev, “Adiabatic limit in Ginzburg–Landau and Seiberg–Witten equations”, TMF, 203:1 (2020), 151–160; Theoret. and Math. Phys., 203:1 (2020), 561–568
Linking options:
https://www.mathnet.ru/eng/tmf9793https://doi.org/10.4213/tmf9793 https://www.mathnet.ru/eng/tmf/v203/i1/p151
|
Statistics & downloads: |
Abstract page: | 356 | Full-text PDF : | 43 | References: | 56 | First page: | 15 |
|