Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 201, Number 1, Pages 84–104
DOI: https://doi.org/10.4213/tmf9721
(Mi tmf9721)
 

This article is cited in 1 scientific paper (total in 1 paper)

Approximate formula for the total cross section for a moderately small eikonal function

A. V. Kisselev

Logunov Institute for High Energy Physics, National Research Center "Kurchatov Institute", Protvino, Moscow Oblast, Russia
Full-text PDF (627 kB) Citations (1)
References:
Abstract: We study the eikonal approximation of the total cross section for the scattering of two unpolarized particles and obtain an approximate formula in the case where the eikonal function $\chi(b)$ is moderately small, $|\chi(b)|\lesssim0.1$. We show that the total cross section is given by a series of improper integrals of the Born amplitude $A_{\mathrm{B}}$. The advantage of this representation compared with standard eikonal formulas is that these integrals contain no rapidly oscillating Bessel functions. We prove two theorems that allow relating the large-$b$ asymptotic behavior of $\chi(b)$ to analytic properties of the Born amplitude and give several examples of applying these theorems. To check the effectiveness of the main formula, we use it to calculate the total cross section numerically for a selection of specific expressions for $A_{\mathrm{B}}$, choosing only Born amplitudes that result in moderately small eikonal functions and lead to the correct asymptotic behavior of $\chi(b)$. The numerical calculations show that if only the first three nonzero terms in it are taken into account, this formula approximates the total cross section with a relative error of $\mathcal{O}(10^{-5})$.
Keywords: eikonal approximation, total cross section, Bessel function, Hankel transform.
Received: 14.03.2019
Revised: 12.04.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 201, Issue 1, Pages 1484–1502
DOI: https://doi.org/10.1134/S0040577919100064
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Kisselev, “Approximate formula for the total cross section for a moderately small eikonal function”, TMF, 201:1 (2019), 84–104; Theoret. and Math. Phys., 201:1 (2019), 1484–1502
Citation in format AMSBIB
\Bibitem{Kis19}
\by A.~V.~Kisselev
\paper Approximate formula for the~total cross section for a~moderately small eikonal function
\jour TMF
\yr 2019
\vol 201
\issue 1
\pages 84--104
\mathnet{http://mi.mathnet.ru/tmf9721}
\crossref{https://doi.org/10.4213/tmf9721}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=4017634}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...201.1484K}
\elib{https://elibrary.ru/item.asp?id=41678476}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 201
\issue 1
\pages 1484--1502
\crossref{https://doi.org/10.1134/S0040577919100064}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000494479000006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85074594435}
Linking options:
  • https://www.mathnet.ru/eng/tmf9721
  • https://doi.org/10.4213/tmf9721
  • https://www.mathnet.ru/eng/tmf/v201/i1/p84
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:345
    Full-text PDF :54
    References:63
    First page:6
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024