|
This article is cited in 1 scientific paper (total in 1 paper)
Full analytic spectrum of generalized Jaynes–Cummings Hamiltonians
A. J. Adanmitonde, G. Y. H. Avossevou Institut de Mathématiques et de Sciences Physiques, Université d’Abomey-Calavi – Unité de Recherche en Physique Théorique, Porto-Novo, République du Bénin
Abstract:
We develop an analytic formalism using basic quantum mechanics techniques to successfully solve the multiphoton Jaynes–Cummings and the generalized Dicke Hamiltonians. For this, we split the Hamiltonians of these models into two operators that have the properties of constants of motion for these systems. We then use some well-known operator properties to obtain complete analytic spectra for the considered models.
Keywords:
quantum mechanics, Jaynes–Cummings Hamiltonian, commuting operator, constant of motion, confluent hypergeometric function.
Received: 09.11.2018 Revised: 08.04.2019
Citation:
A. J. Adanmitonde, G. Y. H. Avossevou, “Full analytic spectrum of generalized Jaynes–Cummings Hamiltonians”, TMF, 201:1 (2019), 105–117; Theoret. and Math. Phys., 201:1 (2019), 1503–1513
Linking options:
https://www.mathnet.ru/eng/tmf9652https://doi.org/10.4213/tmf9652 https://www.mathnet.ru/eng/tmf/v201/i1/p105
|
Statistics & downloads: |
Abstract page: | 289 | Full-text PDF : | 34 | References: | 73 | First page: | 10 |
|