Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 1, Pages 50–71
DOI: https://doi.org/10.4213/tmf9701
(Mi tmf9701)
 

This article is cited in 4 scientific papers (total in 4 papers)

An unusual series of autonomous discrete integrable equations on a square lattice

R. N. Garifullin, R. I. Yamilov

Institute of Mathematics with Computing Centre, Ufa Federal Research Centre of the Russian Academy of Sciences, Ufa, Russia
Full-text PDF (549 kB) Citations (4)
References:
Abstract: We present an infinite series of autonomous discrete equations on a square lattice with hierarchies of autonomous generalized symmetries and conservation laws in both directions. Their orders in both directions are equal to $\kappa N$, where $\kappa$ is an arbitrary natural number and $N$ is the equation number in the series. Such a structure of hierarchies is new for discrete equations in the case $N>2$. The symmetries and conservation laws are constructed using the master symmetries, which are found directly together with generalized symmetries. Such a construction scheme is apparently new in the case of conservation laws. Another new point is that in one of the directions, we introduce the master symmetry time into the coefficients of the discrete equations. In the most interesting case $N=2$, we show that a second-order generalized symmetry is closely related to a relativistic Toda-type integrable equation. As far as we know, this property is very rare in the case of autonomous discrete equations.
Keywords: integrable system, quad equation, generalized symmetry, conservation law, $L$$A~$ pair.
Funding agency Grant number
Russian Science Foundation 15-11-20007
The research of R. I. Yamilov was supported by a grant from the Russian Science Foundation (Project No. 15-11-20007).
Received: 24.01.2019
Revised: 24.01.2019
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 1, Pages 966–984
DOI: https://doi.org/10.1134/S0040577919070031
Bibliographic databases:
Document Type: Article
PACS: 02.30.Ik, 02.30.Jr
Language: Russian
Citation: R. N. Garifullin, R. I. Yamilov, “An unusual series of autonomous discrete integrable equations on a square lattice”, TMF, 200:1 (2019), 50–71; Theoret. and Math. Phys., 200:1 (2019), 966–984
Citation in format AMSBIB
\Bibitem{GarYam19}
\by R.~N.~Garifullin, R.~I.~Yamilov
\paper An~unusual series of autonomous discrete integrable equations on a~square lattice
\jour TMF
\yr 2019
\vol 200
\issue 1
\pages 50--71
\mathnet{http://mi.mathnet.ru/tmf9701}
\crossref{https://doi.org/10.4213/tmf9701}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981366}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200..966G}
\elib{https://elibrary.ru/item.asp?id=38487820}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 1
\pages 966--984
\crossref{https://doi.org/10.1134/S0040577919070031}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479256000003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85065583114}
Linking options:
  • https://www.mathnet.ru/eng/tmf9701
  • https://doi.org/10.4213/tmf9701
  • https://www.mathnet.ru/eng/tmf/v200/i1/p50
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:356
    Full-text PDF :80
    References:35
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024