Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 1, Pages 72–95
DOI: https://doi.org/10.4213/tmf9696
(Mi tmf9696)
 

A geometric construction of solutions of the strict $\mathbf h$-hierarchy

G. F. Helminck

Korteweg-de Vries Institute, University of Amsterdam, Amsterdam, The Netherlands
References:
Abstract: Let $\mathbf{h}$ be a complex commutative subalgebra of the $n{\times}n$ matrices $M_n(\mathbb{C})$. In the algebra MPsd of matrix pseudodifferential operators in the derivation $\partial$, we previously considered deformations of $\mathbf{h}[\partial]$ and of its Lie subalgebra $\mathbf{h}[\partial]_{>0}$ consisting of elements without a constant term. It turned out that the different evolution equations for the generators of these two deformed Lie algebras are compatible sets of Lax equations and determine the corresponding $\mathbf{h}$-hierarchy and its strict version. Here, with each hierarchy, we associate an $MPsd$-module representing perturbations of a vector related to the trivial solution of each hierarchy. In each module, we describe so-called matrix wave functions, which lead directly to solutions of their Lax equations. We next present a connection between the matrix wave functions of the $\mathbf{h}$-hierarchy and those of its strict version; this connection is used to construct solutions of the latter. The geometric data used to construct the wave functions of the strict $\mathbf{h}$-hierarchy are a plane in the Grassmanian $Gr(H)$, a set of $n$ linearly independent vectors $\{w_i\}$ in $W$, and suitable invertible maps $\delta\colon S^1\to\mathbf{h}$, where $S^1$ is the unit circle in $\mathbb{C}^*$. In particular, we show that the action of a corresponding flow group can be lifted from $W$ to the other data and that this lift leaves the constructed solutions of the strict $\mathbf{h}$-hierarchy invariant. For $n>1$, it can happen that we have different solutions of the strict $\mathbf{h}$-hierarchy for fixed $W$ and $\{w_i\}$. We show that they are related by conjugation with invertible matrix differential operators.
Keywords: matrix pseudodifferential operator, Lax equation, strict $\mathbf{h}$-hierarchy, linearization, matrix wave function.
Received: 22.12.2018
Revised: 22.12.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 1, Pages 985–1005
DOI: https://doi.org/10.1134/S0040577919070043
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, “A geometric construction of solutions of the strict $\mathbf h$-hierarchy”, TMF, 200:1 (2019), 72–95; Theoret. and Math. Phys., 200:1 (2019), 985–1005
Citation in format AMSBIB
\Bibitem{Hel19}
\by G.~F.~Helminck
\paper A~geometric construction of solutions of the~strict $\mathbf h$-hierarchy
\jour TMF
\yr 2019
\vol 200
\issue 1
\pages 72--95
\mathnet{http://mi.mathnet.ru/tmf9696}
\crossref{https://doi.org/10.4213/tmf9696}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3981367}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200..985H}
\elib{https://elibrary.ru/item.asp?id=38487821}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 1
\pages 985--1005
\crossref{https://doi.org/10.1134/S0040577919070043}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000479256000004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85070195095}
Linking options:
  • https://www.mathnet.ru/eng/tmf9696
  • https://doi.org/10.4213/tmf9696
  • https://www.mathnet.ru/eng/tmf/v200/i1/p72
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:260
    Full-text PDF :45
    References:40
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024