Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 2, Pages 310–323
DOI: https://doi.org/10.4213/tmf9682
(Mi tmf9682)
 

This article is cited in 4 scientific papers (total in 4 papers)

Weak first-order transition and pseudoscaling behavior in the universality class of the O(N) Ising model

A. O. Sorokin

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Leningrad Oblast, Russia
Full-text PDF (533 kB) Citations (4)
References:
Abstract: Using Monte Carlo and renormalization group methods, we investigate systems with critical behavior described by two order parameters: continuous (vector) and discrete (scalar). We consider two models of classical three-dimensional Heisenberg magnets with different numbers of spin components N=1,,4: the model on a cubic lattice with an additional competing antiferromagnetic exchange interaction in a layer and the model on a body-centered lattice with two competing antiferromagnetic interactions. In both models, we observe a first-order transition for all values of N. In the case where competing exchanges are approximately equal, the first order of a transition is close to the second order, and pseudoscaling behavior is observed with critical exponents differing from those of the O(N) model. In the case N=2, the critical exponents are consistent with the well-known indices of the class of magnets with a noncollinear spin ordering. We also give a possible explanation of the observed pseudoscaling in the framework of the renormalization group analysis.
Keywords: phase transition, Monte Carlo method, renormalization group, frustrated magnet, pseudoscaling.
Funding agency Grant number
Russian Foundation for Basic Research 16-32-60143
This research is supported by the Russian Foundation for Basic Research (Grant No. 16-32-60143).
Received: 15.12.2018
Revised: 15.12.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 2, Pages 1193–1204
DOI: https://doi.org/10.1134/S0040577919080117
Bibliographic databases:
Document Type: Article
PACS: 64.60.De, 75.40.Cx, 05.10.Ln, 75.10.Hk
Language: Russian
Citation: A. O. Sorokin, “Weak first-order transition and pseudoscaling behavior in the universality class of the O(N) Ising model”, TMF, 200:2 (2019), 310–323; Theoret. and Math. Phys., 200:2 (2019), 1193–1204
Citation in format AMSBIB
\Bibitem{Sor19}
\by A.~O.~Sorokin
\paper Weak first-order transition and pseudoscaling behavior in the~universality class of the~$O(N)$ Ising model
\jour TMF
\yr 2019
\vol 200
\issue 2
\pages 310--323
\mathnet{http://mi.mathnet.ru/tmf9682}
\crossref{https://doi.org/10.4213/tmf9682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985741}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1193S}
\elib{https://elibrary.ru/item.asp?id=38710256}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 2
\pages 1193--1204
\crossref{https://doi.org/10.1134/S0040577919080117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483801700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071742177}
Linking options:
  • https://www.mathnet.ru/eng/tmf9682
  • https://doi.org/10.4213/tmf9682
  • https://www.mathnet.ru/eng/tmf/v200/i2/p310
  • This publication is cited in the following 4 articles:
    1. P. T. How, S. K. Yip, “Absence of Ginzburg-Landau mechanism for vestigial order in the normal phase above a two-component superconductor”, Phys. Rev. B, 107:10 (2023)  crossref
    2. Jun Yan, “Functional integrals and phase stability properties in the $O(N)$ vector field condensation model”, Theoret. and Math. Phys., 210:1 (2022), 111–120  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    3. A. O. Sorokin, “First-order transition in the stacked-$J_1$-$J_2$ Ising model on a cubic lattice”, Physica A: Statistical Mechanics and its Applications, 602 (2022), 127621  crossref  mathscinet
    4. A. O. Sorokin, “Phase transition in three-dimensional noncollinear magnetic systems with additional two-fold degeneracy”, JETP Letters, 111:1 (2020), 41–45  mathnet  crossref  crossref  isi  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:291
    Full-text PDF :67
    References:45
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025