Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2019, Volume 200, Number 2, Pages 310–323
DOI: https://doi.org/10.4213/tmf9682
(Mi tmf9682)
 

This article is cited in 4 scientific papers (total in 4 papers)

Weak first-order transition and pseudoscaling behavior in the universality class of the $O(N)$ Ising model

A. O. Sorokin

Petersburg Nuclear Physics Institute, National Research Center Kurchatov Institute, Gatchina, Leningrad Oblast, Russia
Full-text PDF (533 kB) Citations (4)
References:
Abstract: Using Monte Carlo and renormalization group methods, we investigate systems with critical behavior described by two order parameters: continuous $($vector$)$ and discrete (scalar). We consider two models of classical three-dimensional Heisenberg magnets with different numbers of spin components $N=1,\dots,4$: the model on a cubic lattice with an additional competing antiferromagnetic exchange interaction in a layer and the model on a body-centered lattice with two competing antiferromagnetic interactions. In both models, we observe a first-order transition for all values of $N$. In the case where competing exchanges are approximately equal, the first order of a transition is close to the second order, and pseudoscaling behavior is observed with critical exponents differing from those of the $O(N)$ model. In the case $N=2$, the critical exponents are consistent with the well-known indices of the class of magnets with a noncollinear spin ordering. We also give a possible explanation of the observed pseudoscaling in the framework of the renormalization group analysis.
Keywords: phase transition, Monte Carlo method, renormalization group, frustrated magnet, pseudoscaling.
Funding agency Grant number
Russian Foundation for Basic Research 16-32-60143
This research is supported by the Russian Foundation for Basic Research (Grant No. 16-32-60143).
Received: 15.12.2018
Revised: 15.12.2018
English version:
Theoretical and Mathematical Physics, 2019, Volume 200, Issue 2, Pages 1193–1204
DOI: https://doi.org/10.1134/S0040577919080117
Bibliographic databases:
Document Type: Article
PACS: 64.60.De, 75.40.Cx, 05.10.Ln, 75.10.Hk
Language: Russian
Citation: A. O. Sorokin, “Weak first-order transition and pseudoscaling behavior in the universality class of the $O(N)$ Ising model”, TMF, 200:2 (2019), 310–323; Theoret. and Math. Phys., 200:2 (2019), 1193–1204
Citation in format AMSBIB
\Bibitem{Sor19}
\by A.~O.~Sorokin
\paper Weak first-order transition and pseudoscaling behavior in the~universality class of the~$O(N)$ Ising model
\jour TMF
\yr 2019
\vol 200
\issue 2
\pages 310--323
\mathnet{http://mi.mathnet.ru/tmf9682}
\crossref{https://doi.org/10.4213/tmf9682}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3985741}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2019TMP...200.1193S}
\elib{https://elibrary.ru/item.asp?id=38710256}
\transl
\jour Theoret. and Math. Phys.
\yr 2019
\vol 200
\issue 2
\pages 1193--1204
\crossref{https://doi.org/10.1134/S0040577919080117}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000483801700011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85071742177}
Linking options:
  • https://www.mathnet.ru/eng/tmf9682
  • https://doi.org/10.4213/tmf9682
  • https://www.mathnet.ru/eng/tmf/v200/i2/p310
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:274
    Full-text PDF :57
    References:43
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024