|
This article is cited in 3 scientific papers (total in 3 papers)
Quasirenormalizable quantum field theories
M. V. Polyakovab, K. M. Semenov-Tian-Shanskybc, A. O. Smirnovd, A. A. Vladimirove a Ruhr-Universität Bochum, Fakultät für Physik und Astronomie, Institut für Theoretische Physik II,
Bochum, Germany
b Petersburg Nuclear Physics Institute, National Research
Center Kurchatov Institute, Gatchina, Russia
c St. Petersburg National Research Academic University of the~Russian Academy of Sciences, St. Petersburg, Russia
d St. Petersburg State University of Aerospace Instrumentation,
St. Petersburg, Russia
e Universität Regensburg, Institut für
Theoretische Physik, Regensburg, Germany
Abstract:
Leading logarithms in massless nonrenormalizable effective field theories can be computed using nonlinear recurrence relations. These recurrence relations follow from the fundamental requirements of unitarity, analyticity, and crossing symmetry of scattering amplitudes and generalize the renormalization group technique to the case of nonrenormalizable effective field theories. We review the existing exact solutions of nonlinear recurrence relations relevant for field theory applications. We introduce a new class of quantum field theories (quasirenormalizable field theories) in which resumming leading logarithms for $2\to2$ scattering amplitudes yields a possibly infinite number of Landau poles.
Keywords:
renormalization group, effective field theory, leading logarithm, Landau pole, Dixon elliptic function.
Received: 03.12.2018 Revised: 19.01.2019
Citation:
M. V. Polyakov, K. M. Semenov-Tian-Shansky, A. O. Smirnov, A. A. Vladimirov, “Quasirenormalizable quantum field theories”, TMF, 200:2 (2019), 290–309; Theoret. and Math. Phys., 200:2 (2019), 1176–1192
Linking options:
https://www.mathnet.ru/eng/tmf9668https://doi.org/10.4213/tmf9668 https://www.mathnet.ru/eng/tmf/v200/i2/p290
|
Statistics & downloads: |
Abstract page: | 339 | Full-text PDF : | 60 | References: | 53 | First page: | 20 |
|