Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 1, Pages 68–88
DOI: https://doi.org/10.4213/tmf9577
(Mi tmf9577)
 

This article is cited in 6 scientific papers (total in 6 papers)

Soliton scattering in noncommutative spaces

M. Hamanaka, H. Okabe

Graduate School of Mathematics, Nagoya University, Nagoya, Japan
Full-text PDF (566 kB) Citations (6)
References:
Abstract: We discuss exact multisoliton solutions of integrable hierarchies on noncommutative space–times in various dimensions. The solutions are represented by quasideterminants in compact forms. We study soliton scattering processes in the asymptotic region where the configurations can be real-valued. We find that the asymptotic configurations in the soliton scatterings can all be the same as commutative ones, i.e., the configuration of an $N$-soliton solution has $N$ isolated localized lumps of energy, and each solitary wave-packet lump preserves its shape and velocity in the scattering process. The phase shifts are also the same as commutative ones. As new results, we present multisoliton solutions of the noncommutative anti-self-dual Yang–Mills hierarchy and discuss two-soliton scattering in detail.
Keywords: soliton, integrable system, noncommutative geometry.
Funding agency Grant number
Japan Society for the Promotion of Science 16K05318
The research of M. Hamanaka was supported by a Grant-in-Aid for Scientific Research (No. 16K05318).
Received: 05.04.2018
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 1, Pages 1451–1468
DOI: https://doi.org/10.1134/S0040577918100045
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. Hamanaka, H. Okabe, “Soliton scattering in noncommutative spaces”, TMF, 197:1 (2018), 68–88; Theoret. and Math. Phys., 197:1 (2018), 1451–1468
Citation in format AMSBIB
\Bibitem{HamOka18}
\by M.~Hamanaka, H.~Okabe
\paper Soliton scattering in noncommutative spaces
\jour TMF
\yr 2018
\vol 197
\issue 1
\pages 68--88
\mathnet{http://mi.mathnet.ru/tmf9577}
\crossref{https://doi.org/10.4213/tmf9577}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859416}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1451H}
\elib{https://elibrary.ru/item.asp?id=35601325}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 1
\pages 1451--1468
\crossref{https://doi.org/10.1134/S0040577918100045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000449768100004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056091339}
Linking options:
  • https://www.mathnet.ru/eng/tmf9577
  • https://doi.org/10.4213/tmf9577
  • https://www.mathnet.ru/eng/tmf/v197/i1/p68
  • This publication is cited in the following 6 articles:
    1. Sandra Carillo, Cornelia Schiebold, NODYCON Conference Proceedings Series, Advances in Nonlinear Dynamics, Volume III, 2024, 565  crossref
    2. H.  Wajahat  A. Riaz, “Noncommutative generalization and quasi-Gramian solutions of the Hirota equation”, Theoret. and Math. Phys., 214:2 (2023), 194–206  mathnet  crossref  crossref  mathscinet  adsnasa
    3. M. Hamanaka, Ch. Huang, “Multi-soliton dynamics of anti-self-dual gauge fields”, J. High Energy Phys., 2022, no. 1, 039  crossref  mathscinet  isi
    4. C. R. Gilson, M. Hamanaka, Sh.-Ch. Huang, J. J. C. Nimmo, “Soliton solutions of noncommutative anti-self-dual yang-mills equations”, J. Phys. A-Math. Theor., 53:40 (2020), 404002  crossref  mathscinet  isi
    5. M. Hamanaka, Sh.-Ch. Huang, “New soliton solutions of anti-self-dual yang-mills equations”, J. High Energy Phys., 2020, no. 10, 101  crossref  mathscinet  isi  scopus
    6. J. Cobb, A. Kasman, A. Serna, M. Sparkman, “Quaternion-valued breather soliton, rational, and periodic KdV solutions”, J. Nonlinear Math. Phys., 27:3 (2020), 429–452  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :79
    References:56
    First page:11
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025