Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 197, Number 1, Pages 45–67
DOI: https://doi.org/10.4213/tmf9507
(Mi tmf9507)
 

This article is cited in 9 scientific papers (total in 9 papers)

Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces

G. G. Grahovski, A. J. Mustafa, H. Susanto

Department of Mathematical Sciences, University of Essex, Colchester, UK
Full-text PDF (587 kB) Citations (9)
References:
Abstract: Our aim is to develop the inverse scattering transform for multicomponent generalizations of nonlocal reductions of the nonlinear Schrödinger (NLS) equation with $\mathcal{PT}$ symmetry related to symmetric spaces. This includes the spectral properties of the associated Lax operator, the Jost function, the scattering matrix, the minimum set of scattering data, and the fundamental analytic solutions. As main examples, we use the Manakov vector Schrödinger equation (related to A.III-symmetric spaces) and the multicomponent NLS (MNLS) equations of Kullish–Sklyanin type (related to BD.I-symmetric spaces). Furthermore, we obtain one- and two-soliton solutions using an appropriate modification of the Zakharov–Shabat dressing method. We show that the MNLS equations of these types admit both regular and singular soliton configurations. Finally, we present different examples of one- and two-soliton solutions for both types of models, subject to different reductions.
Keywords: integrable system, multicomponent nonlinear Schrödinger equation, Lax representation, Zakharov–Shabat system, spectral decompositions, $\mathcal{PT}$ symmetry, inverse scattering transform, Riemann–Hilbert problem, dressing method.
Received: 08.11.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 197, Issue 1, Pages 1430–1450
DOI: https://doi.org/10.1134/S0040577918100033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. G. Grahovski, A. J. Mustafa, H. Susanto, “Nonlocal reductions of the multicomponent nonlinear Schrödinger equation on symmetric spaces”, TMF, 197:1 (2018), 45–67; Theoret. and Math. Phys., 197:1 (2018), 1430–1450
Citation in format AMSBIB
\Bibitem{GraMusSus18}
\by G.~G.~Grahovski, A.~J.~Mustafa, H.~Susanto
\paper Nonlocal reductions of the~multicomponent nonlinear Schr\"odinger equation on symmetric spaces
\jour TMF
\yr 2018
\vol 197
\issue 1
\pages 45--67
\mathnet{http://mi.mathnet.ru/tmf9507}
\crossref{https://doi.org/10.4213/tmf9507}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3859415}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...197.1430G}
\elib{https://elibrary.ru/item.asp?id=35601319}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 197
\issue 1
\pages 1430--1450
\crossref{https://doi.org/10.1134/S0040577918100033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000449768100003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85056113890}
Linking options:
  • https://www.mathnet.ru/eng/tmf9507
  • https://doi.org/10.4213/tmf9507
  • https://www.mathnet.ru/eng/tmf/v197/i1/p45
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:430
    Full-text PDF :92
    References:49
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024