Typesetting math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 3, Pages 343–372
DOI: https://doi.org/10.4213/tmf9449
(Mi tmf9449)
 

This article is cited in 56 scientific papers (total in 56 papers)

Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation

M. J. Ablowitza, Bao-Feng Fengb, X. Luoc, Z. Musslimanid

a Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, USA
b School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
c Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
d Department of Mathematics, Florida State University, Tallahassee, FL, USA
References:
Abstract: Nonlocal reverse space–time equations of the nonlinear Schrödinger (NLS) type were recently introduced. They were shown to be integrable infinite-dimensional dynamical systems, and the inverse scattering transform (IST) for rapidly decaying initial conditions was constructed. Here, we present the IST for the reverse space–time NLS equation with nonzero boundary conditions (NZBCs) at infinity. The NZBC problem is more complicated because the branching structure of the associated linear eigenfunctions is complicated. We analyze two cases, which correspond to two different values of the phase at infinity. We discuss special soliton solutions and find explicit one-soliton and two-soliton solutions. We also consider spatially dependent boundary conditions.
Keywords: inverse scattering transform, nonlocal RST NLS equation.
Funding agency Grant number
National Science Foundation DMS-1310200
DMS-171599
National Natural Science Foundation of China 11728103
The research of M. J. Ablowitz was supported in part by the National Science Foundation (Grant No. DMS-1310200).
The research of Bao-Feng Feng was supported in part by the National Science Foundation (Grant No. DMS-1715991) and NSFC for Overseas Scholar Collaboration Research (No. 11728103).
Received: 24.08.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 3, Pages 1241–1267
DOI: https://doi.org/10.1134/S0040577918090015
Bibliographic databases:
Document Type: Article
MSC: 37K15; 35Q51; 35Q15.
Language: Russian
Citation: M. J. Ablowitz, Bao-Feng Feng, X. Luo, Z. Musslimani, “Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation”, TMF, 196:3 (2018), 343–372; Theoret. and Math. Phys., 196:3 (2018), 1241–1267
Citation in format AMSBIB
\Bibitem{AblFenLuo18}
\by M.~J.~Ablowitz, Bao-Feng~Feng, X.~Luo, Z.~Musslimani
\paper Inverse scattering transform for the~nonlocal reverse space--time nonlinear Schr\"odinger equation
\jour TMF
\yr 2018
\vol 196
\issue 3
\pages 343--372
\mathnet{http://mi.mathnet.ru/tmf9449}
\crossref{https://doi.org/10.4213/tmf9449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1241A}
\elib{https://elibrary.ru/item.asp?id=35410236}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 3
\pages 1241--1267
\crossref{https://doi.org/10.1134/S0040577918090015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447277900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054665324}
Linking options:
  • https://www.mathnet.ru/eng/tmf9449
  • https://doi.org/10.4213/tmf9449
  • https://www.mathnet.ru/eng/tmf/v196/i3/p343
  • This publication is cited in the following 56 articles:
    1. Tao Xu, Li‐Cong An, Min Li, Chuan‐Xin Xu, “N‐fold Darboux transformation of the discrete PT‐symmetric nonlinear Schrödinger equation and new soliton solutions over the nonzero background”, Stud Appl Math, 2024  crossref
    2. Justin T Cole, Abdullah M Aurko, Ziad H Musslimani, “Collapse dynamics for two-dimensional space-time nonlocal nonlinear Schrödinger equations”, Nonlinearity, 37:4 (2024), 045001  crossref  mathscinet
    3. H. I. Abdel-Gawad, Tukur Abdulkadir Sulaiman, Hajar F. Ismael, “Bright–dark envelope-optical solitons in space-time reverse generalized Fokas–Lenells equation: Modulated wave gain”, Mod. Phys. Lett. B, 2024  crossref
    4. Lihan Zhang, Zhonglong Zhao, Yufeng Zhang, “Dynamics of transformed nonlinear waves for the (2+1)-dimensional pKP-BKP equation: interactions and molecular waves”, Phys. Scr., 99:7 (2024), 075220  crossref
    5. Neja Prinsa N, E Parasuraman, Rishab Antosh B, Haci Mehmet Baskonus, A Muniyappan, “M-shaped, W-shaped and dark soliton propagation in optical fiber for nonlocal fourth order dispersive nonlinear Schrödinger equation under distinct conditions”, Phys. Scr., 99:10 (2024), 105205  crossref
    6. Wen-Yu Zhou, Shou-Fu Tian, Zhi-Qiang Li, “On Riemann–Hilbert problem and multiple high-order pole solutions to the cubic Camassa–Holm equation”, Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 2024, 1  crossref
    7. H. Yang, R. Guo, “A study of periodic solutions and periodic background solutions for the reverse-space–time modified nonlinear Schrödinger equation”, Wave Motion, 117 (2023), 103112  crossref  mathscinet
    8. T. Liu, T. Xia, “Riemann–Hilbert problems and N-soliton solutions of the nonlocal reverse space-time Chen–Lee–Liu equation”, Commun. Theor. Phys., 75:3 (2023), 035002  crossref
    9. H. I. Abdel-Gawad, “Field and reverse field solitons in wave-operator nonlinear Schrödinger equation with space-time reverse: Modulation instability”, Commun. Theor. Phys., 75:6 (2023), 065005  crossref  mathscinet
    10. V. M. Adukov, G. Mishuris, “Utilization of the ExactMPF package for solving a discrete analogue of the nonlinear Schrödinger equation by the inverse scattering transform method”, Proc. R. Soc. A, 479:2269 (2023)  crossref  mathscinet
    11. X.-b. Xiang, S.-l. Zhao, Y. Shi, “Solutions and continuum limits to nonlocal discrete sine-Gordon equations: Bilinearization reduction method”, Stud. Appl. Math., 150:4 (2023), 1274  crossref  mathscinet
    12. X. Wang, J. He, “Darboux transformation and general soliton solutions for the reverse space–time nonlocal short pulse equation”, Physica D: Nonlinear Phenomena, 446 (2023), 133639  crossref  mathscinet
    13. X. Wu, S.-F. Tian, “On long-time asymptotics to the nonlocal short pulse equation with the Schwartz-type initial data: Without solitons”, Physica D: Nonlinear Phenomena, 448 (2023), 133733  crossref  mathscinet
    14. M. Ozisik, A. Secer, M. Bayram, “(3+1)-dimensional Sasa–Satsuma equation under the effect of group velocity dispersion, self-frequency shift and self-steepening”, Optik, 275 (2023), 170609  crossref
    15. Xiu-Bin Wang, Bo Han, “The general fifth-order nonlinear Schrödinger equation with nonzero boundary conditions: Inverse scattering transform and multisoliton solutions”, Theoret. and Math. Phys., 210:1 (2022), 8–30  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    16. M. Gurses, A. Pekcan, “Soliton solutions of the shifted nonlocal NLS and MKdV equations”, Phys. Lett. A, 422 (2022), 127793  crossref  mathscinet  isi
    17. N. K. Vitanov, “Simple equations method (SEsM): an effective algorithm for obtaining exact solutions of nonlinear differential equations”, Entropy, 24:11 (2022), 1653  crossref  mathscinet
    18. H. Zhou, Y. Chen, X. Tang, Y. Li, “Complex excitations for the derivative nonlinear Schrödinger equation”, Nonlinear Dyn, 109:3 (2022), 1947  crossref
    19. X. Xin, Y. Xia, L. Zhang, H. Liu, “Bäcklund transformations, symmetry reductions and exact solutions of (2+1)-dimensional nonlocal DS equations”, Applied Mathematics Letters, 132 (2022), 108157  crossref
    20. W.-Q. Peng, Y. Chen, “N-double poles solutions for nonlocal Hirota equation with nonzero boundary conditions using Riemann–Hilbert method and PINN algorithm”, Physica D: Nonlinear Phenomena, 435 (2022), 133274  crossref  mathscinet
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:529
    Full-text PDF :111
    References:49
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025