Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2018, Volume 196, Number 3, Pages 343–372
DOI: https://doi.org/10.4213/tmf9449
(Mi tmf9449)
 

This article is cited in 55 scientific papers (total in 55 papers)

Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation

M. J. Ablowitza, Bao-Feng Fengb, X. Luoc, Z. Musslimanid

a Department of Applied Mathematics, University of Colorado at Boulder, Boulder, CO, USA
b School of Mathematical and Statistical Sciences, University of Texas Rio Grande Valley, Edinburg, TX, USA
c Department of Mathematics, State University of New York at Buffalo, Buffalo, NY, USA
d Department of Mathematics, Florida State University, Tallahassee, FL, USA
References:
Abstract: Nonlocal reverse space–time equations of the nonlinear Schrödinger (NLS) type were recently introduced. They were shown to be integrable infinite-dimensional dynamical systems, and the inverse scattering transform (IST) for rapidly decaying initial conditions was constructed. Here, we present the IST for the reverse space–time NLS equation with nonzero boundary conditions (NZBCs) at infinity. The NZBC problem is more complicated because the branching structure of the associated linear eigenfunctions is complicated. We analyze two cases, which correspond to two different values of the phase at infinity. We discuss special soliton solutions and find explicit one-soliton and two-soliton solutions. We also consider spatially dependent boundary conditions.
Keywords: inverse scattering transform, nonlocal RST NLS equation.
Funding agency Grant number
National Science Foundation DMS-1310200
DMS-171599
National Natural Science Foundation of China 11728103
The research of M. J. Ablowitz was supported in part by the National Science Foundation (Grant No. DMS-1310200).
The research of Bao-Feng Feng was supported in part by the National Science Foundation (Grant No. DMS-1715991) and NSFC for Overseas Scholar Collaboration Research (No. 11728103).
Received: 24.08.2017
English version:
Theoretical and Mathematical Physics, 2018, Volume 196, Issue 3, Pages 1241–1267
DOI: https://doi.org/10.1134/S0040577918090015
Bibliographic databases:
Document Type: Article
MSC: 37K15; 35Q51; 35Q15.
Language: Russian
Citation: M. J. Ablowitz, Bao-Feng Feng, X. Luo, Z. Musslimani, “Inverse scattering transform for the nonlocal reverse space–time nonlinear Schrödinger equation”, TMF, 196:3 (2018), 343–372; Theoret. and Math. Phys., 196:3 (2018), 1241–1267
Citation in format AMSBIB
\Bibitem{AblFenLuo18}
\by M.~J.~Ablowitz, Bao-Feng~Feng, X.~Luo, Z.~Musslimani
\paper Inverse scattering transform for the~nonlocal reverse space--time nonlinear Schr\"odinger equation
\jour TMF
\yr 2018
\vol 196
\issue 3
\pages 343--372
\mathnet{http://mi.mathnet.ru/tmf9449}
\crossref{https://doi.org/10.4213/tmf9449}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3849103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2018TMP...196.1241A}
\elib{https://elibrary.ru/item.asp?id=35410236}
\transl
\jour Theoret. and Math. Phys.
\yr 2018
\vol 196
\issue 3
\pages 1241--1267
\crossref{https://doi.org/10.1134/S0040577918090015}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000447277900001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85054665324}
Linking options:
  • https://www.mathnet.ru/eng/tmf9449
  • https://doi.org/10.4213/tmf9449
  • https://www.mathnet.ru/eng/tmf/v196/i3/p343
  • This publication is cited in the following 55 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:500
    Full-text PDF :88
    References:46
    First page:35
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024