Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 395–443
DOI: https://doi.org/10.4213/tmf9320
(Mi tmf9320)
 

This article is cited in 9 scientific papers (total in 9 papers)

Hurwitz numbers and products of random matrices

A. Yu. Orlovab

a Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow, Russia
b National Research University "Higher School of Economics", Moscow, Russia
Full-text PDF (894 kB) Citations (9)
References:
Abstract: We study multimatrix models, which may be viewed as integrals of products of tau functions depending on the eigenvalues of products of random matrices. We consider tau functions of the two-component Kadomtsev–Petviashvili (KP) hierarchy (semi-infinite relativistic Toda lattice) and of the B-type KP (BKP) hierarchy introduced by Kac and van de Leur. Such integrals are sometimes tau functions themselves. We consider models that generate Hurwitz numbers $H^{\mathrm E,\mathrm F}$, where $\mathrm E$ is the Euler characteristic of the base surface and $\mathrm F$ is the number of branch points. We show that in the case where the integrands contain the product of $n>2$ matrices, the integral generates Hurwitz numbers with $\mathrm E\le2$ and $\mathrm F\le n+2$. Both the numbers $\mathrm E$ and $\mathrm F$ depend both on $n$ and on the order of the factors in the matrix product. The Euler characteristic $\mathrm E$ can be either an even or an odd number, i.e., it can match both orientable and nonorientable (Klein) base surfaces depending on the presence of the tau function of the BKP hierarchy in the integrand. We study two cases, the products of complex and the products of unitary matrices.
Keywords: Hurwitz number, Klein surface, Schur polynomial, characters of a symmetric group, hypergeometric function, random partition, random matrix, matrix model, products of random matrices, tau function, two-component Kadomtsev–Petviashvili hierarchy, Toda lattice, B-type Kadomtsev–Petviashvili hierarchy (Kac–van de Leur).
Received: 16.12.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1282–1323
DOI: https://doi.org/10.1134/S0040577917090033
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. Yu. Orlov, “Hurwitz numbers and products of random matrices”, TMF, 192:3 (2017), 395–443; Theoret. and Math. Phys., 192:3 (2017), 1282–1323
Citation in format AMSBIB
\Bibitem{Orl17}
\by A.~Yu.~Orlov
\paper Hurwitz numbers and products of random matrices
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 395--443
\mathnet{http://mi.mathnet.ru/tmf9320}
\crossref{https://doi.org/10.4213/tmf9320}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693587}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1282O}
\elib{https://elibrary.ru/item.asp?id=29887811}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1282--1323
\crossref{https://doi.org/10.1134/S0040577917090033}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030160121}
Linking options:
  • https://www.mathnet.ru/eng/tmf9320
  • https://doi.org/10.4213/tmf9320
  • https://www.mathnet.ru/eng/tmf/v192/i3/p395
  • This publication is cited in the following 9 articles:
    1. A. Yu. Orlov, “Integrals of tau functions: A round dance tau function and multimatrix integrals”, Theoret. and Math. Phys., 215:3 (2023), 784–792  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Yannick Mvondo-She, “From Hurwitz numbers to Feynman diagrams: Counting rooted trees in log gravity”, Nuclear Physics B, 995 (2023), 116350  crossref  mathscinet
    3. Y. Mvondo-She, “Integrable hierarchies, Hurwitz numbers and a branch point field in critical topologically massive gravity”, SciPost Phys., 12:4 (2022)  crossref  mathscinet
    4. Sergey Natanzon, Aleksandr Orlov, Proceedings of Symposia in Pure Mathematics, 103.1, Integrability, Quantization, and Geometry, 2021, 337  crossref
    5. S. M. Natanzon, A. Yu. Orlov, “Hurwitz numbers from Feynman diagrams”, Theoret. and Math. Phys., 204:3 (2020), 1166–1194  mathnet  crossref  crossref  adsnasa  isi  elib
    6. N. Amburg, A. Orlov, D. Vasiliev, “On products of random matrices”, Entropy, 22:9 (2020), 972  crossref  mathscinet  isi
    7. Alexandrov A. Chapuy G. Eynard B. Harnad J., “Weighted Hurwitz Numbers and Topological Recursion”, Commun. Math. Phys., 375:1 (2020), 237–305  crossref  mathscinet  isi
    8. Rafael I. Nepomechie, “Wronskian-type formula for inhomogeneous $TQ$ equations”, Theoret. and Math. Phys., 204:3 (2020), 1195–1200  mathnet  mathnet  crossref  crossref  mathscinet  isi  scopus
    9. J. W. van de Leur, A. Yu. Orlov, “Character expansion of matrix integrals”, J. Phys. A-Math. Theor., 51:2 (2018), 025208  crossref  mathscinet  zmath  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:460
    Full-text PDF :135
    References:67
    First page:21
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025