Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 444–458
DOI: https://doi.org/10.4213/tmf9265
(Mi tmf9265)
 

An integrable hierarchy including the AKNS hierarchy and its strict version

G. F. Helminck

Korteweg-de Vries Institute for Mathematics, University of Amsterdam, The Netherlands
References:
Abstract: We present an integrable hierarchy that includes both the AKNS hierarchy and its strict version. We split the loop space $\mathfrak{g}$ of $gl_2$ into a Lie subalgebras $\mathfrak{g}_{\ge0}$ and $\mathfrak{g}_{<0}$ of all loops with respectively only positive and only strictly negative powers of the loop parameter. We choose a commutative Lie subalgebra $C$ in the whole loop space $\mathfrak{s}$ of $sl_2$ and represent it as $C=C_{\ge0}\oplus C_{<0}$. We deform the Lie subalgebras $C_{\ge0}$ and $C_{<0}$ by the respective groups corresponding to $\mathfrak{g}_{<0}$ and $\mathfrak{g}_{\ge0}$. Further, we require that the evolution equations of the deformed generators of $C_{\ge0}$ and $C_{<0}$ have a Lax form determined by the original splitting. We prove that this system of Lax equations is compatible and that the equations are equivalent to a set of zero-curvature relations for the projections of certain products of generators. We also define suitable loop modules and a set of equations in these modules, called the linearization of the system, from which the Lax equations of the hierarchy can be obtained. We give a useful characterization of special elements occurring in the linearization, the so-called wave matrices. We propose a way to construct a rather wide class of solutions of the combined AKNS hierarchy.
Keywords: AKNS equation, compatible Lax equations, AKNS hierarchy, strict version, zero curvature form, linearization, oscillating matrix, wave matrix, loop group, loop algebra.
Received: 07.08.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1324–1336
DOI: https://doi.org/10.1134/S0040577917090045
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: G. F. Helminck, “An integrable hierarchy including the AKNS hierarchy and its strict version”, TMF, 192:3 (2017), 444–458; Theoret. and Math. Phys., 192:3 (2017), 1324–1336
Citation in format AMSBIB
\Bibitem{Hel17}
\by G.~F.~Helminck
\paper An~integrable hierarchy including the~AKNS hierarchy and its strict version
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 444--458
\mathnet{http://mi.mathnet.ru/tmf9265}
\crossref{https://doi.org/10.4213/tmf9265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693588}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1324H}
\elib{https://elibrary.ru/item.asp?id=29887812}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1324--1336
\crossref{https://doi.org/10.1134/S0040577917090045}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030170789}
Linking options:
  • https://www.mathnet.ru/eng/tmf9265
  • https://doi.org/10.4213/tmf9265
  • https://www.mathnet.ru/eng/tmf/v192/i3/p444
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:331
    Full-text PDF :111
    References:52
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024