Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 1, Pages 84–103
DOI: https://doi.org/10.4213/tmf9291
(Mi tmf9291)
 

Asymptotic behavior of the spectrum of combination scattering at Stokes phonons

A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov

Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, Moscow, Russia
References:
Abstract: For a class of polynomial quantum Hamiltonians used in models of combination scattering in quantum optics, we obtain the asymptotic behavior of the spectrum for large occupation numbers in the secondary quantization representation. Hamiltonians of this class can be diagonalized using a special system of polynomials determined by recurrence relations with coefficients depending on a parameter (occupation number). For this system of polynomials, we determine the asymptotic behavior a discrete measure with respect to which they are orthogonal. The obtained limit measures are interpreted as equilibrium measures in extremum problems for a logarithmic potential in an external field and with constraints on the measure. We illustrate the general case with an exactly solvable example where the Hamiltonian can be diagonalized by the canonical Bogoliubov transformation and the special orthogonal polynomials degenerate into the Krawtchouk classical discrete polynomials.
Keywords: creation operator, annihilation operator, polynomial quantum Hamiltonian, combination scattering, asymptotics of a discrete orthogonal polynomial, equilibrium measure in an external field.
Funding agency Grant number
Russian Science Foundation 14-21-00025
This research was supported by a grant from the Russian Science Foundation (Project No. 14-21-00025).
Received: 01.11.2016
Revised: 24.01.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 1, Pages 1480–1497
DOI: https://doi.org/10.1134/S0040577917100063
Bibliographic databases:
PACS: 02.30
Language: Russian
Citation: A. I. Aptekarev, M. A. Lapik, Yu. N. Orlov, “Asymptotic behavior of the spectrum of combination scattering at Stokes phonons”, TMF, 193:1 (2017), 84–103; Theoret. and Math. Phys., 193:1 (2017), 1480–1497
Citation in format AMSBIB
\Bibitem{AptLapOrl17}
\by A.~I.~Aptekarev, M.~A.~Lapik, Yu.~N.~Orlov
\paper Asymptotic behavior of the~spectrum of combination scattering at Stokes phonons
\jour TMF
\yr 2017
\vol 193
\issue 1
\pages 84--103
\mathnet{http://mi.mathnet.ru/tmf9291}
\crossref{https://doi.org/10.4213/tmf9291}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716527}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1480A}
\elib{https://elibrary.ru/item.asp?id=30512355}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 1
\pages 1480--1497
\crossref{https://doi.org/10.1134/S0040577917100063}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000415198200006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85034429232}
Linking options:
  • https://www.mathnet.ru/eng/tmf9291
  • https://doi.org/10.4213/tmf9291
  • https://www.mathnet.ru/eng/tmf/v193/i1/p84
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:479
    Full-text PDF :111
    References:48
    First page:18
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024