Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 193, Number 1, Pages 66–83
DOI: https://doi.org/10.4213/tmf9221
(Mi tmf9221)
 

This article is cited in 3 scientific papers (total in 3 papers)

Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models

J. V. Hounguevoua, F. A. Dossab, G. Y. Avossevoua

a Laboratoire de Recherche en Physique Théorique, Institut de Mathématiques et de Sciences Physiques, Université de Porto-Novo, Porto-Novo, Rep. du Bénin
b Faculté des Sciences et Techniques, Université des Sciences, Arts et Techniques de Natitingou, Rep. du Bénin
Full-text PDF (445 kB) Citations (3)
References:
Abstract: We develop a biorthogonal formalism for non-Hermitian multimode and multiphoton Jaynes–Cummings models. For these models, we define supersymmetric generators, which are especially convenient for diagonalizing the Hamiltonians. The Hamiltonian and its adjoint are expressed in terms of supersymmetric generators having the Lie superalgebra properties. The method consists in using a similarity dressing operator that maps onto spaces suitable for diagonalizing Hamiltonians even in an infinite-dimensional Hilbert space. We then successfully solve the eigenproblems related to the Hamiltonian and its adjoint. For each model, the eigenvalues are real, while the eigenstates do not form a set of orthogonal vectors. We then introduce the biorthogonality formalism to construct a consistent theory.
Keywords: non-Hermitian multimode Jaynes–Cummings Hamiltonians, non-Hermitian multiphoton Jaynes–Cummings Hamiltonians, Lie superalgebra, similarity transformation, biorthogonal quantum mechanics.
Funding agency
The research of J. V. Hounguevou is supported by the Ministère de l'Enseignement Supérieur et de la Recherche Scientifique of the Republic of Benin.
Received: 09.05.2016
Revised: 29.01.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 193, Issue 1, Pages 1464–1479
DOI: https://doi.org/10.1134/S0040577917100051
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: J. V. Hounguevou, F. A. Dossa, G. Y. Avossevou, “Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes–Cummings models”, TMF, 193:1 (2017), 66–83; Theoret. and Math. Phys., 193:1 (2017), 1464–1479
Citation in format AMSBIB
\Bibitem{HouDosAvo17}
\by J.~V.~Hounguevou, F.~A.~Dossa, G.~Y.~Avossevou
\paper Biorthogonal quantum mechanics for non-Hermitian multimode and multiphoton Jaynes--Cummings models
\jour TMF
\yr 2017
\vol 193
\issue 1
\pages 66--83
\mathnet{http://mi.mathnet.ru/tmf9221}
\crossref{https://doi.org/10.4213/tmf9221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3716526}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...193.1464H}
\elib{https://elibrary.ru/item.asp?id=30512354}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 193
\issue 1
\pages 1464--1479
\crossref{https://doi.org/10.1134/S0040577917100051}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000415198200005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85034442314}
Linking options:
  • https://www.mathnet.ru/eng/tmf9221
  • https://doi.org/10.4213/tmf9221
  • https://www.mathnet.ru/eng/tmf/v193/i1/p66
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:389
    Full-text PDF :122
    References:48
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024