Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 506–522
DOI: https://doi.org/10.4213/tmf9290
(Mi tmf9290)
 

This article is cited in 5 scientific papers (total in 5 papers)

The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer

A. V. Latysheva, N. M. Gordeevab

a Moscow State Region University, Moscow, Russia
b Bauman Moscow State Technical University, Moscow, Russia
Full-text PDF (448 kB) Citations (5)
References:
Abstract: We obtain an analytic solution of the boundary problem for the behavior (fluctuations) of an electron plasma with an arbitrary degree of degeneracy of the electron gas in the conductive layer in an external electric field. We use the kinetic Vlasov–Boltzmann equation with the Bhatnagar–Gross–Krook collision integral and the Maxwell equation for the electric field. We use the mirror boundary conditions for the reflections of electrons from the layer boundary. The boundary problem reduces to a one-dimensional problem with a single velocity. For this, we use the method of consecutive approximations, linearization of the equations with respect to the absolute distribution of the Fermi–Dirac electrons, and the conservation law for the number of particles. Separation of variables then helps reduce the problem equations to a characteristic system of equations. In the space of generalized functions, we find the eigensolutions of the initial system, which correspond to the continuous spectrum (Van Kampen mode). Solving the dispersion equation, we then find the eigensolutions corresponding to the adjoint and discrete spectra (Drude and Debye modes). We then construct the general solution of the boundary problem by decomposing it into the eigensolutions. The coefficients of the decomposition are given by the boundary conditions. This allows obtaining the decompositions of the distribution function and the electric field in explicit form.
Keywords: characteristic system, eigenfunction, Drude mode, Debye mode, Van Kampen mode, decomposition of the solution with eigenfunctions.
Received: 19.10.2016
Revised: 11.01.2017
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1380–1395
DOI: https://doi.org/10.1134/S0040577917090082
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. V. Latyshev, N. M. Gordeeva, “The behavior of plasma with an arbitrary degree of degeneracy of electron gas in the conductive layer”, TMF, 192:3 (2017), 506–522; Theoret. and Math. Phys., 192:3 (2017), 1380–1395
Citation in format AMSBIB
\Bibitem{LatGor17}
\by A.~V.~Latyshev, N.~M.~Gordeeva
\paper The~behavior of plasma with an~arbitrary degree of degeneracy of electron gas in the~conductive layer
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 506--522
\mathnet{http://mi.mathnet.ru/tmf9290}
\crossref{https://doi.org/10.4213/tmf9290}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693592}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1380L}
\elib{https://elibrary.ru/item.asp?id=29887817}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1380--1395
\crossref{https://doi.org/10.1134/S0040577917090082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030160386}
Linking options:
  • https://www.mathnet.ru/eng/tmf9290
  • https://doi.org/10.4213/tmf9290
  • https://www.mathnet.ru/eng/tmf/v192/i3/p506
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:452
    Full-text PDF :160
    References:78
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024