Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2017, Volume 192, Number 3, Pages 489–505
DOI: https://doi.org/10.4213/tmf9186
(Mi tmf9186)
 

This article is cited in 1 scientific paper (total in 1 paper)

Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian

Wenhua Wanga, Huaixin Caob, Zhengli Chenb

a School of Ethnic Nationalities Education, Shaanxi Normal University, Xi'an, China
b School of Mathematics and Information Science, Shaanxi Normal University, Xi'an, China
Full-text PDF (558 kB) Citations (1)
References:
Abstract: We discuss an adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian $H(t)$. Such a Hamiltonian is a time-dependent operator $H(t)$ similar to a time-dependent Hermitian Hamiltonian $G(t)$ under a time-independent invertible operator $A$. Using the relation between the solutions of the evolution equations $H(t)$ and $G(t)$, we prove that $H(t)$ and $H^{\dagger}(t)$ have the same real eigenvalues and the corresponding eigenvectors form two biorthogonal Riesz bases for the state space. For the adiabatic approximate solution in case of the minimum eigenvalue and the ground state of the operator $H(t)$, we prove that this solution coincides with the system state at every instant if and only if the ground eigenvector is time-independent. We also find two upper bounds for the adiabatic approximation error in terms of the norm distance and in terms of the generalized fidelity. We illustrate the obtained results with several examples.
Keywords: adiabatic evolution, adiabatic approximation, error estimate, uniformly pseudo-Hermitian Hamiltonian.
Funding agency Grant number
National Natural Science Foundation of China 11601300
11571213
11471200
11401359
11371012
Fundamental Research Funds for the Central Universities of China GK201703093
This work was supported by the NNSF of China (Grant Nos. 11601300, 11571213, 11471200, 11401359, and 11371012) and the FRF for the Central Universities (Grant No. GK201703093).
Received: 04.03.2016
Revised: 23.11.2016
English version:
Theoretical and Mathematical Physics, 2017, Volume 192, Issue 3, Pages 1365–1379
DOI: https://doi.org/10.1134/S0040577917090070
Bibliographic databases:
PACS: 03.65.Ca, 03.65.Ta, 03.65.Vf
Language: Russian
Citation: Wenhua Wang, Huaixin Cao, Zhengli Chen, “Adiabatic approximation for the evolution generated by an $A$-uniformly pseudo-Hermitian Hamiltonian”, TMF, 192:3 (2017), 489–505; Theoret. and Math. Phys., 192:3 (2017), 1365–1379
Citation in format AMSBIB
\Bibitem{WanCaoChe17}
\by Wenhua~Wang, Huaixin~Cao, Zhengli~Chen
\paper Adiabatic approximation for the~evolution generated by an~$A$-uniformly pseudo-Hermitian Hamiltonian
\jour TMF
\yr 2017
\vol 192
\issue 3
\pages 489--505
\mathnet{http://mi.mathnet.ru/tmf9186}
\crossref{https://doi.org/10.4213/tmf9186}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=3693591}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2017TMP...192.1365W}
\elib{https://elibrary.ru/item.asp?id=29887815}
\transl
\jour Theoret. and Math. Phys.
\yr 2017
\vol 192
\issue 3
\pages 1365--1379
\crossref{https://doi.org/10.1134/S0040577917090070}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000412094700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-85030151559}
Linking options:
  • https://www.mathnet.ru/eng/tmf9186
  • https://doi.org/10.4213/tmf9186
  • https://www.mathnet.ru/eng/tmf/v192/i3/p489
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:332
    Full-text PDF :106
    References:45
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024